
Article

Sensor-Based Trajectory Generation for Advanced Driver

Assistance System

Christopher James Shackleton, Rahul Kala and Kevin Warwick *

School of Systems Engineering, University of Reading, Whiteknights, Reading, Berkshire,

RG6 6AY, UK; E-Mails: c.j.shackleton@pgr.reading.ac.uk (C.J.S); rkala001@gmail.com (R.K.)

* Author to whom correspondence should be addressed; E-Mail: k.warwick@reading.ac.uk;

Tel.: +44-118-378-8210; Fax: +44-118-378-8220.

Citation: C. J. Shackleton, R. Kala, K. Warwick (2013) Sensor-Based Trajectory Generation for

Advanced Driver Assistance System. Robotics, 2(1): 19-35.

Final Version Available At: http://www.mdpi.com/2218-6581/2/1/19

Abstract: This paper investigates the trajectory generation problem for an advanced driver

assistance system that could sense the driving state of the vehicle, so that a collision free

trajectory can be generated safely. Specifically, the problem of trajectory generation is

solved for the safety assessment of the driving state and to manipulate the vehicle in order

to avoid any possible collisions. The vehicle senses the environment so as to obtain

information about other vehicles and static obstacles ahead. Vehicles may share the

perception of the environment via an inter-vehicle communication system. The planning

algorithm is based on a visibility graph. A lateral repulsive potential is applied to

adaptively maintain a trade-off between the trajectory length and vehicle clearance, which

is the greatest problem associated with visibility graphs. As opposed to adaptive roadmap

approaches, the algorithm exploits the structured nature of the environment for

construction of the roadmap. Furthermore, the mostly organized nature of traffic systems is

exploited to obtain orientation invariance, which is another limitation of both visibility

graphs and adaptive roadmaps. Simulation results show that the algorithm can successfully

solve the problem for a variety of commonly found scenarios.

Keywords: advanced driver assistance systems; trajectory generation; intelligent vehicles;

path planning; visibility graphs

1. Introduction

Advanced Driver Assistance Systems (ADASs) [1] are seen to be the bridge between the current,

driver oriented automotive design and future autonomous vehicle design. ADASs come in a variety of

formats, from pedestrian detection [2], to lane keeping assistance/lane departure warning [3]. These

systems are in place to reduce the amount that human drivers have to do in order to control a vehicle;

this is a particularly necessary task, as 34,826 road casualties occurred in 2009 within the European

Union [4]. The same reference shows that personal cars and taxis account for the largest percentage of

these, in total 48.88%, with pedestrians in second, marking pedestrian detection and avoidance systems

as a necessity for future vehicles. However, in order for these systems to function, sensors must be

employed for the collection of information, which can then be used as inputs to trajectory planning

algorithms. The interconnection of these advanced driver assistance systems is what is likely to lead to

the first commercially available autonomous vehicle.

ADAS make an interesting example of human centric computing, wherein technology is used to

assist humans [5]. The aim of ADAS is to use intelligent devices to aid in the decision making of

human drivers. The chief motivation is to make vehicles secure and avoid any possible collision, even

if the human makes errors. An important aspect of these systems is hence to enable technology to work

hand-in-hand with a human operator, wherein any information should be presented in a manner

acceptable to the human, while any decisions or actions of the assistance system should be in

consensus with the human driver’s preferences. Lack of consensus or lack of trust between the human

and the assistance system can be a severe threat.

ADAS may be information-based or manipulation-based. Information based systems use intelligent

sensors and data processing to provide information to the user useful for his/her driving. Manipulation

based systems, in turn, use sensor and vision information to actually control the car in scenarios that

seem to be dangerous. The human, on the other hand, may still be required for general driving,

depending upon his/her preferences. Manipulation-based systems are harder to design, as they have

additional considerations of when, what and how much assistance is to be given—they are, however,

safer. In real life, a safe state may become dangerous in a split second, owing to a poor driving

decision or a large reaction time to changes in the environment. Information-based systems warn the

driver, allowing them to take the necessary safety measures. Considering high operating speeds, the

time spent by a human in perceiving the warning sign, interpreting it and deciding on the preventative

action may be too large [6]. Assistance systems can, however, take precautionary actions well in time,

as well as prepare to reduce the effects on a driver should a crash occur [7]. It should be remembered,

however, that false positives in sensing provide additional concerns [8].

1.1. Sensing

The first important task in an ADAS is sensing, wherein the vehicle perceives the other vehicles and

static obstacles around. The sensing results in a local map of the environment, which is used for further

processing. Sensors, such as radar, LIDaR, ultrasonics and cameras are used within the automotive

industry to provide information to a vehicle’s control systems about its surroundings. It is these sensors

that are used for the ADAS systems. In this case, many, multiple sensors are used at once for the same

task in order to verify information [9] or to make measurements where the primary sensing modality

fails [10]. This is known as sensor fusion. Benefits and problems with the interconnection of systems are

highlighted in Darms and Winners’ work [11], where some applications of sensors are also highlighted.

Many sensors operating at boundaries can prevent systems from working correctly in particular

environments, and therefore, this restricts the use of that particular sensor as a solution to a problem.

This is evident in the case of Automatic Cruise Control (ACC) in which it is possible to implement

camera-based systems; however, most commercially available ACC units operate using radar. This is

due to the fact that radar is unaffected by lighting conditions and weather, whilst still having sufficient

range. The sensor also satisfies the requirements for following a vehicle at speed. Cameras, however,

may be ideal for multi-object tracking ACC.

Typically, sensors within an automotive application are required to be low cost, as well as reliable.

The most common sensor found on entry-level vehicles is the ultrasonic parking aid, of which many

variants exist. The range for this particular sensor is relatively small, at approximately 4 m, which may

be ideal for close following applications; however, it may be necessary to measure larger distances, in

which case a camera (up to 40 m range), LIDaR or radar (both 150 m range) may be appropriate.

A modern perspective is to use inter-vehicle communication [12,13] between intelligent vehicles.

When operating in a grid of mixed traffic consisting of both intelligent vehicles and non-intelligent

vehicles, the intelligent vehicles can transmit information about other vehicles or obstacles. This enables

limited sensing capability vehicles to obtain information about the traffic ahead and vehicles to “see”

beyond their vision range. On top of this, collaborative data checking can refine vehicle sensing errors.

1.2. Trajectory Generation and Assistance

Given a map, the aim of trajectory generation is to construct a short, safe and smooth trajectory.

Safety not only accounts for the fact that no collision should occur, but also makes the vehicle

maintain the correct safety distance. The safety distance covers for any sensing and actuation errors

that may appear. Further, this is in consensus with human driving, wherein drivers prefer to maintain

wide gaps between themselves and vehicles all around. Important considerations in the choice of

trajectory planning algorithms are completeness, optimality and computation time. Reactive planning

techniques (e.g., [14]) assess the immediate scenario and compute the immediate move. Such

techniques may well have small computation times; however, they are almost always neither complete

nor optimal. Hence, deliberative techniques (e.g., [15]) are preferred, which, at the expense of

computation time, are better in completeness and optimality.

The environment may be structured or non-structured. When planning in a structured environment,

it is assumed that the complete environment is known, with the different obstacles depicted as

polygons or circles with known sizes. This is naturally true in the case of traffic scenarios, with other

vehicles being mostly rectangular, whose geometry can be sensed. Search techniques then fit a lot of

applications, as they assure both optimality and completeness. A structured environment can be easily

converted into a graph (or similar structure) with a limited number of nodes for fast planning, although

search-based planning in an unstructured environment would be too computationally expensive.

Typical approaches include Voronoi maps [16], velocity obstacles [17] and visibility graphs [18,19].

Unlike mainstream mobile robotics, the aim is not to make the vehicle physically move by a

computed trajectory, since the human may have a different plan in mind. Instead, the aim is to assess

the vehicle’s safety state, depending upon which it is decided whether the assistance system should

intervene in the human driving to correct his/her trajectory and, if so, by what magnitude. Should

evasive action need to be taken, this could be conveyed to the driver by means of a force feedback

steering wheel, as used in [20,21]; interestingly, acceleration reduction can also be conveyed to the

driver in a similar way [22].

1.3. Proposed Solution and Main Contributions

This paper deals with the design of an assistance system that ensures user safety and takes

preventative steps for the same. The algorithm assumes that a map produced by sensors and in

cooperation with the other vehicles is already available. The map is used for generation of the

trajectory, which is the chief part of the problem tackled in this paper. The constructed trajectory is

then used for deciding the control action to be applied based on the assessed risk. Due to the current

constraints, the sensing and manipulation aspects of the assistance system cannot be physically

implemented and tested; they are for motivation only.

The developed solution is a hybrid of visibility graphs [18,19] and adaptive roadmaps [23–26].

The visibility graphs are well-suited for structured environments for which they perform fast and

effective planning. The general idea is to place graph nodes across the obstacle points. The nodes are

then assessed for connectivity to produce a graph, which is used for planning. The biggest problem

with this approach is the assumption of a structured environment, as well as the ability to control the

trade-off between the trajectory length and clearance. Clearance denotes the (more than minimal)

safety distance available to the vehicle. The assumption of a structured environment is not a bad

assumption to make in a traffic scenario. However it is important to intelligently place the vehicles

depending upon how much space is available.

Adaptive roadmap based approaches [23–26] can easily model the potential functions to trade-off

between the trajectory length and clearance. Being widely used for mobile robotics, these generally

sample out random points from the map, which are later checked for connectivity, and the resultant

graph produced is called as a roadmap. The paper uses the potential-based modelling of these

approaches applied to a graph based on the visibility graphs. As a result, lesser and more strategically

placed nodes are produced.

Orientation is a major factor, which decides the feasibility of a node (and the associated clearance

or length of a path) in such a graph or roadmap-based approach. The factor is even more useful in a

road scenario in which vehicles are tightly packed on roads instead of having wide open spaces, as in

many mobile robotics cases. Hence, it is not possible to focus on diagonal or maximum length for node

placement. The paper handles this problem using the mostly organized nature of a general traffic

landscape, as compared to that in mobile robotics. For the same reason, the application of the potential

for alteration of a visibility graph node is restricted to the lateral direction of the road. Section 3.3

elaborates this point.

The key contributions of the approach are: (i) using a hybrid of potential fields and visibility graphs

for trajectory planning, (ii) using heuristics to solve the problem of rotational dependence associated

with such techniques in environments with narrow spaces, (iii) interpreting all traffic behaviours and

casting them into a visibility graph framework, rather than only using nodes around obstacles and

(iv) interpreting the human driver’s driving intentions (through the heading direction) for the problem

of trajectory planning, thereby making the system computing trajectory close to the human

desired trajectory.

The remainder of this paper is organized as follows: in Section 2, some of the related works are

presented. Section 3 describes the problem and goes forward with the modelling of the complete algorithm.

Experimental results are given in Section 4, and some concluding remarks are made in Section 5.

2. Related Works

In a recent work, Anderson et al. [27] studied a similar problem. The authors used Delaunay

triangles to compute all possible homotopies in a given map. The authors also used Dijkstra’s

algorithm for computing the trajectory. The greatest limitation of the approach, however, is that the

central points were used for trajectory generation. This means that for scenarios having wide segments

between obstacles, the vehicle would drive at the centre, over-compromising its distance to clearance.

The proposed algorithm uses the potential function to model the trade-off. Furthermore, the authors did

not model the behaviour of a vehicle following another vehicle (as other vehicles were treated as static

obstacles), whereas this is considered in the proposed approach.

Our prior work focused on the use of a Rapidly-exploring Random Tress (RRT) Connect [28,29]

algorithm for the task of navigation of multiple autonomous vehicles. The vehicles were assumed to be

connected via an inter-vehicle communication system, allowing all vehicles to be planned in a

prioritized manner. The search was biased towards the areas around the current lateral position of the

vehicles. In a related work [30], the problem was solved using RRT. The RRT was sampled using the

vehicle’s control model, which ensured that the trajectory generated was safely navigable. The

proposed approach is, however, modelled as an ADAS instead of as an autonomous vehicle. RRT and

similar approaches can be computationally expensive and, hence, are good models for autonomous

driving, where planning frequency is not large. The proposed approach meanwhile assumes the

structured nature of the environment for faster planning.

A related problem is decision making in intelligent vehicles. Schubert et al. [31] sensed the vehicles

ahead, behind and the distance from the lane markings for decision making regarding lane change. The

authors used Bayesian networks for the task. In another approach, Hegeman et al. [32] computed the

feasibility of overtaking based on which a human could initiate an overtaking manoeuvre. For the task

of construction of the overtaking trajectory, Naranjo et al. [33] developed a fuzzy rule-based system.

The system was divided into stages of change to the overtaking lane: complete an overtake and return

to the original lane. All these systems perform well when the road is marked with lanes and the entire

traffic strictly operates in lanes. In reality, some segments of traffic on some roads may get

unorganized, where the vehicles partly slip between lanes. Further, the problem of obstacle avoidance

cannot be perfectly solved by lane changes. Hence, generalized planners (like the one proposed) that

do not necessarily assume lanes are considered to be better.

Significant work has been done in the domain of mobile robotics for the task of trajectory planning.

Gayle et al. [34] used a social potential field to differentiate between types of agents in a multi-agent

framework. Using this, along with the general potential field, the authors carried out the planning of

agents, which moved under the guidance of an adaptive roadmap [35]. A general graph search cannot

be employed for the problem, due to computational constraints. Kala et al. [36] proposed a multi-layer

graph search, which made the algorithm iterative and computationally fast. The authors initially carried

the graph search on lower resolution maps, and based on the results, the resolution of promising areas

was increased. Similar work in the domain of multiple autonomous vehicles can be found in Kala and

Warwick [37], which consisted of four layers of hierarchy.

In another approach, the hierarchical D* algorithm was presented by Cagigas and Abascal [38].

The D* algorithm is better suited to a dynamic environment, and its hierarchical nature makes it

computationally less intensive. Even though the modifications result in making these approaches

computationally less demanding, they cannot be used in such real time systems. Further, it is not

possible to hierarchically construct the trajectory of a vehicle, which is a concept suited for open

space-like environments. Decisions about overtaking and lane changes are only possible knowing the

actual available separations between vehicles and the obstacles. It is not possible to construct a coarser

map and make such decisions, as employed in [38].

3. Algorithm

This section talks about the complete design of the assistance system. First, the problem statement

is defined, and later, the different segments of the algorithm are discussed.

3.1. Problem Definition

Consider that a vehicle is travelling at a speed v and is currently located at position s with an

orientation of Φ. Let the vehicle be a rectangle of length L and width W. A road segment ahead of the

vehicle with a length of Ω is considered. It is assumed that the vision algorithms can sense the road

ahead and differentiate it from forbidden zones, the zone for vehicles travelling in the opposite

direction, pavements, ditches etc. The first task associated with the algorithm is to sense the obstacles

and other vehicles around. Consider that the vehicle is fitted with appropriate sensors to sense these or

that the vehicles are intelligent and can sense each other (and the obstacles) and share the information.

Hence, let R be the set of vehicles or obstacles, each with a position pi and orientation θi. Since, for

a forward travelling vehicle, a collision is only possible with vehicles ahead with smaller speeds, only

these are considered. Cases, such as verging, make collisions with vehicles to the side possible.

However, such collisions are handled by measuring and tracking side distances and are broadly not

dealt with by trajectory-based warning systems. For simplicity, all other vehicles and obstacles are

assumed to be rectangles of length li and width wi. Only vehicles and obstacles within the road

segment are considered. The only vehicles to be considered are those that the vehicle being controlled

looks like it will overtake in the future. These vehicles generally have a lower speed than the vehicle

being controlled. The human driver may control his/her speed, so as to clearly indicate the intentions

of overtaking or following the vehicle ahead [39]. The algorithm is, therefore, largely active only in the

case of overtaking.

Given such a map, the first problem is to construct a trajectory, τ. Since the subsequent motion of

the other vehicles cannot be ascertained, they are treated as static obstacles. Hence, subsequent text

will use the term vehicles and obstacles interchangeably. The trajectory planning is instantaneous, and

hence, as these vehicles move, the trajectory adapts itself. In general, the attempt is to compute a

trajectory, which is feasible tt free , is short in length (minimize ||τ||), has a high average clearance

(maximize ||C(τ)||) and has a high smoothness (or low curvature) at the steepest turn (minimize

max(κ(τ))). Here, ξ
free

 denotes the obstacle free configuration space, which considers all the other

obstacles as static, ||.|| denotes the Euclidian norm, C denotes the clearance and κ denotes the curvature.

The other problem is to consider a control action. It is assumed that the user applies a control action

of u at the current state. The trajectory, τ, is assessed to compute the safety of the current state. Let the

desired input to trace the constructed trajectory be ud. The algorithm, hence, needs to modify the

control input to produce a control input, u’, used for the navigation of the vehicle, such that the user

barely feels the difference, while the control used for navigation is still safe. This means when the

vehicle is in a very safe state, the user input, u, is used for navigation. However, in a very

collision-prone state, effectively, the vehicle drives itself until a safe state is reached. The general

framework is given by Figure 1.

Figure 1. General architecture of the assistance system.

3.2. Initializing Visibility Graph

The visibility graph G(V, E) needs to be constructed based upon the sensed obstacles. This

sub-section deals with the computation of the node set, V. The first type is obstacle nodes. Using these

nodes, the vehicle can avoid an obstacle. Since, in a structured environment, the optimal (length only)

trajectory of a point vehicle goes through the obstacle corners, the initial position of these nodes is

taken to be just outside the obstacle corners. Let an obstacle be positioned at pi with orientation θi, such

that its four corners are at
 ,

 ,
 and

 . The obstacle nodes are placed just outside the obstacle,

given by Equation (1), where

 is a small vector pointing radially outwards from the corner, Ci

j
. Here,

i covers vehicles, while j covers the corners of the i
th

 vehicle:

 ji

j

i

j

iCO
,

 (1)

The second type of node is the vehicle following nodes. It may not be possible for a vehicle to

avoid all the other vehicles before the end of the road, and hence, it may have to slow down and follow

another vehicle. The purpose of the graph is to admit all the possible plans of the vehicle. While

obstacle nodes admit the overtaking and obstacle avoidance plans, the vehicle following nodes are

supposed to admit the plans, where the vehicle decides to follow some other vehicle. These nodes are

Sensing

Inter-vehicle

communication

Environment Trajectory

Planning

Map
Trajectory τ

User Input

(u)

Safety

Assessment

Manipulation

Assistance
Effective Input

(u')

Vehicle

Control

Safety state
Desired

Input (ud)

taken at a distance of q behind every vehicle in R. Here, q is the safety distance, which allows the

vehicle to actually slow down and follow.

Consider a vehicle located at pi with orientation θi. The lateral position (Y-axis, along the width of

the road) is the same as that of pi. Let

 be the corner of the vehicle at pi, which has the least

longitudinal occupancy (most behind longitudinally, along the X axis, the length of the road). For the

node to be admissible, it is necessary that it lies longitudinally ahead of the vehicle’s current

longitudinal occupancy and, subsequently, further by a distance, so as to allow a turn (currently equal

to the vehicles length). The longitudinal position of the node is taken at a distance q behind

. These

nodes may hence be given by Equation (2). Throughout the paper, for a point P(x,y), P[X] refers to the

X axis component (x) and P[Y] refers to the Y axis component (y).

 i

j

ii

j

i XCjYpqXCF])[min(arg,][,][(2)

3.3. Applying Lateral Potentials

Since the vehicle is not point-sized, it is evident that the obstacle nodes (as initialized) cannot be

used for navigation and need to be moved in proportion to the vehicle size. The movement should first

cater to the feasibility considerations, such that a vehicle placed at the node does not collide with the

obstacle. Subsequently, if additional distance is available, the node should be moved, so as to maintain

a trade-off between path length and clearance. Excessive movement would make the paths too long,

while small movements would result in small clearances. Obstacle nodes are placed very close to the

obstacles and, hence, placement of the vehicle at the obstacle node implies zero clearance. As these

nodes are moved away, the clearance increases at the cost of path length. Each node is affected by a

repulsive potential from all the obstacles and the road boundaries. Such a motion of the nodes is

carried out iteratively for a few iterations. In the small regions around the obstacles, the potential is

large, and hence, the node is pushed back strongly until it reaches a point far enough, when potential

almost dies off. If sufficient distance is not available, the node would lie in the middle of the obstacles.

This is explained in Figure 2(a).

The other major issue is that the vehicle is rectangular, and its feasibility at a position (and hence

the clearance) depends upon the orientation of the vehicle (Figure 2(b)). A popular approach [18] is to

maintain a minimal distance equal to half the diagonal, which ensures that any orientation would lead

to feasibility. Road scenarios are tightly packed, and hence, such extra space cannot always be kept.

However, we exploit here the generally organized nature of a traffic landscape, where vehicles are

generally driving along the road, unlike mobile robotics, where robots can be heading just about anywhere.

Consider, for example, a close overtake/obstacle avoidance. A vehicle would slide in from its

current position to a position laterally just next to the vehicle/obstacle being avoided (Figure 2(c)).

Hence, in the closest case, wherein no extra distance is available, the separation between the vehicle’s

central position and the obstacle boundary would be half the vehicles width (say W/2). In other words,

potentials can be applied in order to keep a distance of W/2 from obstacles to ensure feasibility.

Figure 2. Application of lateral Potentials. (a) Length and clearance trade-off. (b) Problem

of rotation. (c) Heuristic of keeping minimum separation as half the width. (d) Sources of

potential at a point oi.

(a) (b)

(c) (d)

This heuristic, however, only holds when the obstacle avoidance point is located laterally next to

the obstacle, unlike the diagonal version of a visibility graph approach or a potential direction of

adaptive roadmaps (where multiple points are deployed per obstacle for framing an avoidance

strategy). Hence, the potentials used for motion of the nodes are applied only in the lateral direction.

Consider an obstacle node located at a position oi. It is repelled by all the obstacles and the road

boundaries. For computational constraints, the obstacles are assumed to be represented by only the

corner points

, each of which repels the node by a magnitude inversely proportional to the square of

the distance. The road boundaries also act as obstacles and repel the node. The repulsion is, however,

proportional to the shortest distance between the vehicle and the road boundaries. The resultant

potential is given by Equation (3).

j
iC

i

i

i

j

i

i

j

i

i

WYoM

WYo
YoCu

WoC
Z

2

2
2

1,2/][max

1

1,2/][max

1
).(

1,2/max

1

(3)

The first term in Equation (3) denotes the potential due to obstacles, while the second and third

terms denote the potentials from the left and right boundaries. One is kept as a minimum distance to

avoid excessively large numbers as distances approach zero.)(i
j

i oCu

 is the unit vector in the direction

 to oi, and the projection of the resultant potential in the Y axis is considered. M is the road width.

The sources of potential are explained in Figure 2(d).

Vehicle

Trajectory

width/2

Larger arrows mean smaller potentials.

Projections along lateral (Y) axis are taken

oi

Ci
j

Y

The more the vehicle is projected to move along the line, A, the

larger is the clearance and the larger is the path length. Gray

arrows show how the potential gradient (used for moving the

point x) is large at the extremes and null at the centre.

Projected

Vehicle
A

Vehicle

Trajectory

x

Obstacle

The feasibility of the vehicle depends upon

its rotation (along axis B), if the separation

from the obstacle corner is less than half

the diagonal. As the road is narrow, half

the diagonal distance cannot be kept.

diagonal/2

B

X

X

X

X

Y

Y

Y Y

At each iteration, obstacle nodes are moved as per the immediate potential, given by Equation (4).

 ,][max][' iii ZYoYo (4)

Here, α scales the potential to the immediate movement of the node, while β restricts the maximum

amount by which the node may be moved.

Additional nodes are added. The first is the source node (s), which is the current position of the

vehicle. This node has a single edge to a direction maintenance node, which ensures the initial trajectory

is generated in the current heading direction of the vehicle (Φ). This node is taken at a distance of

L from the current position s of the vehicle (or s + Lû(Φ)). The last category is destination nodes (D),

which are used to navigate the vehicle from obstacle avoidance points to the end of the road segment,

so as to complete the trajectory within the segment, if feasible. A vehicle in the absence of any obstacle

aims to maintain its lateral position on the road. This set of nodes is hence given by Equation (5), where

Ω is the length of the road and
 is the obstacle node after the application of the lateral potential:

 i i YoD][', (5)

The vertex set V of the graph is hence given by Equation (6):

DFOuLssV ')}(ˆ,{ (6)

3.4. Graph Search

The source node has a single edge, which is to the directional maintenance node. The rest of

(|V| − 1)
2
 possible edges between all vertices are checked for feasibility. A configuration space, ξ

free
, is

constructed, treating all the obstacles as static. The path between node Vi and node Vj traversed by the

vehicle in the direction Vi to Vj is checked for feasibility in this configuration space. If the path is

feasible, an edge is added.

A uniform cost search algorithm is applied over the graph to compute the best path. The trajectory

cost function is taken as the trajectory length; however, a penalty is applied for small clearances. The

lateral potential measured at the node is taken as the indicator of the clearance loss. This encourages

the algorithm to find smaller and clearer paths. Since lateral potentials are already applied, all nodes,

which could have reasonable clearances, obtain positions to allow these clearances. This means that

the graph search practically works only on length, avoiding any node that could not obtain a reasonable

clearance. Minimizing the length automatically results in maximizing smoothness. Further infeasible

nodes (if any) have a very high penalty and are hence not used in the optimal trajectory.

Every node is associated with three types of cost. These are path length from the source (L), total

clearance from the source (C) and total cost (Cost). In an expansion of a node Vj from node Vi, the

costs are updated by Equations (7–9):

L(Vj) = L(Vi) + ||Vj – Vi|| (7)

C(Vj) = C(Vi) + Z(Vj) (8)

Cost(Vj) = L(Vj) + ρC(Vj) (9)

Here, Z(Vj) is the potential measured at the point Vj and ρ is the penalty constant. Reasonably far

from the obstacle, the potential is nearly zero and, hence, so is the penalization.

The search may not always end in a destination node, as it may not be possible to reach the end of

the road segment, and instead, a vehicle may end up by following another vehicle. In such cases, the

most distant node is chosen, and ties are broken on the basis of the total cost. This results in a path (τ')

from the source to goal.

The path returned by the graph search (τ') needs to be additionally smoothed at the joints of the nodes;

this is done by using spline curves. A coarser level trajectory is sampled and passed as control points

for the construction of the spline curve. The resultant curve is taken to be the trajectory (τ) of the vehicle.

3.5. Trajectory Control

The trajectory obtained is assessed for a vehicle’s safety state. An unsafe state requires a greater

manoeuvre, and hence, the trajectory is not very smooth. The minimum curvature along the trajectory

is measured. In a discrete trajectory, at any general point at a distance of t on the vehicle’s trajectory

(say τ(t)) the curvature (κ(τ(t))) is given by Equation 10, where d is a small number:

κ(τ(t)) = ||τ(t + d) + τ(t – d) – 2τ(t)|| (10)

Lesser curvatures give a safer state. This factor is normalized, so as to lie between zero and one.

Let the minimum curvature recorded on the trajectory be κ(τ). Consider at any instance the user

gives an input, u, to the system. Based on the computed trajectory, let the desired input of the system,

as per the computed trajectory, be ud, the magnitude of which depends upon the kinematic modelling

and control system. The resultant input (u') given to the vehicle is then found from Equation (11):

max

maxmin

min

)(

)(

)(

))(1()('

d

d

u

uu

u

u (11)

Here, κmin is the minimum threshold below, which the system has considered safe enough and the

user is allowed to drive. κmax is the maximum threshold above which the system is considered unsafe

and the human is disallowed to drive. In intermediate states, the resultant input is given as a weighted

average of the desired and user inputs, which means that in this interval, the resultant input is gradually

taken over from the user, as he/she drives with less of a safety margin.

4. Results

The algorithm was tested through simulations. The simulation tool took as input the sensed

obstacles. Each of these had its own size and orientation with respect to the road. The obstacles were

placed nearly in lanes, so as to make the scenario more realistic. However, the difference in sizes and

orientations necessitated a non-lane-based trajectory planning. The initial position and orientation of

the vehicle was also fed into the tool. The simulation tool assessed the scenario and computed the

trajectory, which was displayed.

We first discuss here a step-by-step solution to the simplest task, which is that of obstacle

avoidance. The vehicle had an obstacle in front of it, which it had to overcome. First, the obstacle

nodes and the vehicle-following nodes were placed as shown in Figure 3(a). These nodes were acted

upon by the lateral potentials and, hence, were moved, as shown in Figure 3(b). Figure 3(b) also shows

the source node, direction maintenance node and the destination nodes. The edges were connected by

feasibility analysis. The optimal path is shown separately. The smoothened trajectory is shown

in Figure 3(d).

Figure 3. Results for obstacle avoidance. (a) Initial nodes. (b) Nodes after application of

lateral potential. (c) Resultant trajectory.

(a)

(b)

(c)

Figure 4. Experimental Results.

(a)

(b)

(c)

The second scenario consisted of two obstacles (or vehicles). The first obstacle was larger than the

second. The algorithm decided to pass the first obstacle on its right-hand side and the second obstacle

on its left-hand side, which is (arguably) the best strategy to take. The resultant trajectory is shown

in Figure 4(a).

To test the scalability of the approach, another obstacle was added into the scenario. The resultant

scenario consisted of an obstacle just ahead of the vehicle to avoid, which meant that it must turn to the

Obstacle Nodes

Vehicle Following

Node

Obstacle Nodes

Vehicle Following

Node
Destination Nodes

Source

Node

Direction maintenance node

Optimal path

X

X

X

Y

Y

Y

left or right. However, other obstacles were positioned on either side. The algorithm decided to make

the vehicle turn right, as it would later find a smaller obstacle, which was easier to avoid. Taking a left

turn initially could have made the subsequent traversal risky. The resultant trajectory for the scenario is

shown in Figure 4(b).

In the last scenario, the road was completely blocked by vehicles. Hence, the vehicle under control

needed to decide which vehicle in front to follow. The choice was such that the vehicle reached the

most distant point, and hence, the central position was chosen. This trajectory is shown in Figure 4(c).

An attempt was made to gradually take control of the vehicle from the human driver, for which

curvature was used as an indicator. The best way to study this effect is the obstacle-avoidance

scenario. Experiments were performed over a set of points, which varied in their distance from the

obstacle. As the vehicle went near to the obstacle, there was an increase in the curvature, which

indicated a higher risk. Hence, if the human driver did not see the obstacle and kept driving, the

algorithm would gradually intervene. The trajectories for different positions are shown in Figure 5(a),

while the corresponding change in the curvature values is shown in Figure 5(b).

Figure 5. Effect of change in heading distance to the obstacle. (a) Trajectories (b) Curvature.

(a) (b)

Figure 6. Effect of change in orientation to the obstacle. (a) Trajectories (b) Curvature.

(a) (b)

The risk is not always due to the distance of the vehicle from the obstacle; it can also be due to the

heading direction. This factor was also tested. The same position of the vehicle was tested for safety

for various values of the heading direction. The corresponding trajectories are shown in Figure 6(a),

and the curvatures are plotted in Figure 6(b). An anti-clockwise turn is obviously risky, since the

vehicle has to turn by a greater magnitude. This is confirmed by a significant rise in curvature. The

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3

C
u

rv
a
tu

re

Relative longitudnal position of the vehicle

0

0.1

0.2

0.3

0.4

0.5

0.6

-20 0 20

C
u

rv
a
tu

re

Orientation angle (degrees)

figure also shows that a clockwise turn is also associated with a slightly higher risk, as it makes the

turn a little more difficult.

5. Conclusions

In this paper, it was assumed that the environment can be sensed using a variety of sensors, in

cooperation with the other vehicles using an inter-vehicle communication system. The sensed

environment was used by a trajectory planner. The planning algorithm employed a hybrid of visibility

graphs and an adaptive roadmap. A number of additional nodes were added, as per the problem

requirements.

The motion of the nodes of the graph was restricted to the lateral direction only, which gives

rotational invariance to the algorithm. Uniform cost search was used on the resultant map, and the path

was smoothened using spline curves. The problem was solved on a variety of typical scenarios. In each

scenario, the task was to construct a trajectory to successfully avoid all the obstacles, failing which it

was preferred to follow a vehicle instead. As the vehicle approached an obstacle, a rise in curvature

was observed. This can be used to smoothly change the control from a human driver to the assistance

system. A similar observation was made on the rotation of the vehicle.

The motivation was to design and implement the complete assistance system. Currently, the biggest

limitation of the work is that the system cannot be simulation-based on human inputs. Hence, the

physical manipulation is restricted to motivation only. The simulation needs to be extended to a virtual

driving system, over which a human can be made to control a vehicle in assistance with the designed

system. In terms of trajectory generation, better trajectory cost functions need to be considered, which

match perfectly with the human preferences. Based on the human generated inputs, it may be necessary

to assess the intent of the human, rather than just assuming the human takes the best decisions based on

the current pose. Ultimately, testing on a physical vehicle is necessary to validate performance.

It should also be noted that, due to the simplified modelling of the vehicle, the trajectory planning

algorithm in its current form would not be suitable for application in a real traffic scenario. This is due

to the fact that considerations, such as side slip (swerving) are not taken into account; however, this

may be improved by use of a more sophisticated vehicle model. Traffic rules govern the decision

whether a lane change is possible or not, which in the current system is decided purely by the human

driver. The system cannot alter the decision, and hence, the interpretation of the traffic rules for safety

consideration is entirely up to the human driver. Currently, the system makes every such change safe

by modification of steering or travel speeds. Disallowing lane changes or overtaking depending upon

the traffic rules directly by the algorithm may well be taken into account in future versions of

the algorithm.

One important question, which has not been dealt with here, is how much a human driver would be

willing to allow a computer-based system to take over vehicle control. Clearly, this is a much bigger

problem than can be tackled in a paper of this type, which is concerned primarily with the technical

aspects of bringing this possibility about. In such a situation, many different social pressures and

requirements come into effect and, as with all computer-based control systems, a vitally important

aspect is ultimate confidence in performance delivery on the part of the computer system. Hence, there

is a need for realistic simulation runs and subsequent practical scenario trials in order to prove the

validity and safety of the computer system.

Acknowledgments

The authors wish to thank the Commonwealth Scholarship Commission in the United Kingdom and

the British Council for their support of the second named author through the Commonwealth Scholarship

and Fellowship Program—2010—UK award number INCS-2010-161.

References

1. Hummel, T.; Kühn, M.; Bende, J.; Lang, A. Advanced Driver Assistance Systems: An Investigation

of Their Potential Safety Benefits Based on an Analysis of Insurance Claims In Germany;

Research report FS 03; German Insurance Association (GDV): Berlin, Germany, 2011.

2. Gerónimo, D.; López, A.M.; Sappa, A.D.; Graf, T. Survey of pedestrian detection for advanced

driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1239–1258.

3. Sarshar, M. A Novel System for Advanced Driver Assistance Systems. In Proceedings of the 4th

Annual IEEE Systems Conference, San Diego, CA, USA, April 2010; pp. 529–534.

4. Trivedi, M.M.; Cheng, S.Y. Holistic sensing and active displays for intelligent driver support

systems. Computer 2007, 40, 60–68.

5. Trivedi, M.M.; Gandhi, T.; McCall, J. Looking-in and looking-out of a vehicle: Computer-vision-

based enhanced vehicle safety. IEEE Trans. Intell. Transport. Syst. 2007, 8, 108–120.

6. Cellario, M. Human-centered intelligent vehicles: Toward multimodal interface integration.

IEEE Intell. Syst. 2001, 16, 78–81.

7. Hannan, M.A.; Hussain, A.; Samad, S.A. Sensing systems and algorithms for airbag deployment

decision. Sensors 2011, 11, 888–890.

8. Parasuraman, R.; Hancock, P.A.; Olofinboba, O. Alarm effectiveness in driver-centred

collision-warning systems. Ergonomics 1997, 40, 390–399.

9. Stein, G.P.; Mano, O.; Shashua, A. Vision-Based ACC with a Single Camera: Bounds on Range

and Range Rate Accuracy. In Proceedings of the IEEE Intelligent Vehicles Symposium, Columbus,

OH, USA, 9–11 June 2003; pp. 120–125.

10. Schlegl, T.; Bretterklieber, T.; Neumayer, M.; Zangl, H. Combined capacitive and ultrasonic

distance measurement for automotive applications. Sensors 2011, 11, 2636–2642.

11. Dams, M.; Winner, H. A Modular System Architecture for Sensor Data Processing of ADAS

Applications. In Proceedings of the IEEE Intelligent Vehicles Symposium, Las Vegas, NV, USA,

6–8 June 2005; pp. 729–734.

12. Tsugawa, S. Inter-Vehicle Communications and Their Applications to Intelligent Vehicles:

An Overview. In Proceedings of the IEEE Intelligent Vehicle Symposium, Versailles, France,

17–21 June 2002; pp. 564–569.

13. Reichardt, D.; Miglietta, M.; Moretti, L.; Morsink, P.; Schulz, W. CarTALK 2000: Safe and

Comfortable Driving Based upon Inter-Vehicle-Communication. In Proceedings of the IEEE

Intelligent Vehicle Symposium, Versailles, France, 17–21 June 2002; pp. 545–550.

14. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In Proceedings

of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA,

March 1985; pp. 500–505.

15. Stentz, A. Optimal and Efficient Path Planning for Partially-Known Environments. In Proceedings

of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA,

8–13 May 1994; pp. 3310–3317.

16. Choset, H.; Burdick, J. Sensor Based Planning. I. The Generalized Voronoi Graph. In Proceedings

of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan,

21–27 May 1995; pp. 1649–1655.

17. Fiorini, P.; Shiller, Z. Motion Planning in Dynamic Environments Using Velocity Obstacles.

Int. J. Roboti. Res. 1998, 17, 760–772.

18. Wesley, M.A.; Lozano-Pérez, T. An algorithm for planning collision-free paths among polyhedral

obstacles. Comm. ACM 1979, 22, 560–570.

19. Oommen, B.; Iyengar, S.; Rao, N.; Kashyap, R. Robot navigation in unknown terrains using

learned visibility graphs. Part I: The disjoint convex obstacle case. IEEE J. Robot. Autom. 1987,

3, 672–681.

20. Keller, C.G.; Dang, T.; Fritz, H.; Joos, A.; Rabe, C.; Gavrila, D.M. Active pedestrian safety by

automatic braking and evasive steering. IEEE Trans. Intell. Transport. Syst. 2011, 12, 1292–1304.

21. Jensen, M.J.; Tolbert, A.M.; Wagner, J.R.; Member, S.; Switzer, F.S.; Finn, J.W. A customizable

automotive steering system with a Haptic feedback control strategy for obstacle avoidance

notification. IEEE Trans. Veh. Tech. 2011, 60, 4208–4216.

22. Mulder, M.; Abbink, D.A.; van Paassen, M.M.; Mulder, M. Design of a Haptic gas pedal for

active car-following support. IEEE Trans. Intell. Transport. Syst. 2011, 12, 268–279.

23. Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.C. Analysis of probabilistic roadmaps for path

planning. IEEE Trans. Robot. Autom. 1998, 14, 166–171.

24. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning

in highdimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580.

25. Gayle, R.; Sud, A.; Lin, M.C.; Manocha, D. Reactive Deformation Roadmaps: Motion Planning

of Multiple Robots in Dynamic Environments. In Proceedings of the 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November

2007; pp. 3777–3783.

26. Quinlan, S.; Khatib, O. Elastic Bands: Connecting Path Planning and Control. In Proceedings of

the 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA, USA,

2–6 May 1993; pp. 802–807.

27. Anderson, S.J.; Karumanchi, S.B.; Iagnemma, K. Constraint-Based Planning and Control for

Safe, Semi-Autonomous Operation of Vehicles. In Proceedings of the 2012 IEEE Intelligent

Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 383–388.

28. Kala, R.; Warwick, K. Multi-vehicle planning using RRT-connect. Paladyn J. Behav. Robot.

2012, 2, 134–144.

29. Kala, R.; Warwick, K. Planning of Multiple Autonomous Vehicles Using RRT. In Proceedings

of the 10th IEEE International Conference on Cybernetic Intelligent Systems, London, UK,

September 2011; pp. 20–25.

30. Kuwata, Y.; Karaman, S.; Teo, J.; Frazzoli, E.; How, J.P.; Fiore, G. Real-time motion planning with

applications to autonomous urban driving. IEEE Trans. Contr. Syst. Tech. 2009, 17, 1105–1118.

31. Schubert, R.; Schulze, K.; Wanielik, G. Situation assessment for automatic lane-change

maneuvers. IEEE Trans. Intell. Transport. Syst. 2010, 11, 607–616.

32. Hegeman, G.; Tapani, A.; Hoogendoorn, S. Overtaking assistant assessment using traffic

simulation. Transport. Res. C 2009, 17, 617–630.

33. Naranjo, J.E.; González, C.; García, R.; de Pedro, T. Lane-change fuzzy control in autonomous

vehicles for the overtaking maneuver. IEEE Trans. Intell. Transport. Syst. 2008, 9, 438–450.

34. Gayle, R.; Moss, W.; Lin, M.C.; Manocha, D. Multi-Robot Coordination Using Generalized

Social Potential Fields. In Proceedings of the 2009 IEEE International Conference on Robotics

and Automation, Kobe, Japan, 12–17 May 2009; pp.106–113.

35. Gayle, R.; Manocha, D. Navigating Virtual Agents in Online Virtual Worlds. In Proceedings of

the 13th International Symposium on 3D Web Technology, Los Angeles, CA, USA, April 2008;

ACM: New York, NY, USA; pp. 53–56.

36. Kala, R.; Shukla, A.; Tiwari, R. Robotic path planning in static environment using hierarchical

multi-neuron heuristic search and probability based fitness. Neurocomputing 2011, 74, 2314–2335.

37. Kala, R.; Warwick, K. Multi-level planning for semi-autonomous vehicles in traffic scenarios

based on separation maximization. J. Intell. Robotic Syst. 2013, doi: 10.1007/s10846-013-9817-7.

38. Cagigas, D.; Abascal, J. A hierarchical extension of the D* algorithm. J. Intell. Robotic Syst.

2005, 42, 393–413.

39. Kala, R.; Warwick, K. Motion planning of autonomous vehicles in a non-autonomous vehicle

environment without speed lanes. Eng. Appl. Artif. Intell. 2013, doi: 10.1016/j.engappai.2013.02.001.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

