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Abstract: Motion planning for multiple mobile robots must ensure the optimality of the path of each and 

every robot, as well as overall path optimality, which requires cooperation amongst robots. The paper 

proposes a solution to the problem, considering different source and goal of each robot. Each robot uses a 

Grammar based Genetic Programming for figuring the optimal path in a maze-like map, while a master 

evolutionary algorithm caters to the needs of overall path optimality. Co-operation amongst the individual 

robots’ evolutionary algorithms ensures generation of overall optimal paths. The other feature of the 

algorithm includes local optimization using memory based lookup where optimal paths between various 

crosses in map are stored and regularly updated. Feature called wait for robot is used in place of 

conventionally used priority based techniques. Experiments are carried out with a number of maps, 

scenarios, and different robotic speeds. Experimental results confirm the usefulness of the algorithm in a 

variety of scenarios. 
 
Keywords: Path Planning, Motion Planning, Mobile Robotics, Genetic Programming, Grammatical 

Evolution, Co-operative Evolution, Multi-Robot Systems. 
 
1. Introduction 
 
The problem of multi-robot motion planning deals with computation of paths of various robots such that 

each robot has an optimal or near optimal path, but the overall path of all the robots combined is optimal. 

This is a more complex task as compared to a single-robot motion planning, where the factor of 

coordination among the various robots is not applicable, and the single robot can use its own means to 

compute the path (Parker, Schneider, and Schultz, 2005). The problem of motion planning may be 

centralized or decentralized. In centralized planning all the robots are centrally planned by a planner, 

usually taking into account all the complex interactions that they may have. This results in the generation of 

a very complex configuration space, over which the search is to be performed. The decentralized planning, 

on the other hand, has an independent planner for every robot. Each robot is planned separately in its own 

configuration space, which makes the planning much simpler. Then efforts may be made to avoid the 

possibility of collision between the various robots. The centralized planning is more time consuming, but 

optimal as compared to decentralized planning (Arai and Ota, 1992; Sánchez-Ante and Latombe, 2002). 
 
In this paper we assume a simple problem modeling scenario. We have a maze like map of M x N grids. 

Each grid may be black or white, denoting the presence or absence of obstacle, which are all assumed to be 

stationary. The grid is however not the unit position for robots which can occupy partial grid positions on 

the map. The complete map consists of horizontal and vertical lanes, which cris-cross each other at grids 

known as crosses. The task is to move n robots R1, R2, … Rn. Each robot Ri has a start grid Si, which is its 

initial location; a goal grid Gi, which is the destination where it intends to arrive at the end of its journey; 

and a constant speed of motion Vi (0 < Vi ≤ 1) grids/unit time step. All robots are assumed to be of the same 

size of 1 x 1 grids. The planner needs to plan the path of all the robots Ri. Let the path of robot Ri be given 

by Pi(t), which denotes its position at time t. We know that P i(0)=Si. Let the path generated be such that the 

robot Ri reaches the goal Gi at time Ti i.e. Pi(Ti)=Gi. We assume that after reaching the goal, the robot 
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disappears from the goal, and does not obstruct other robots to pass by i.e. P i(Ti+1) = NIL. In this 

assumption we differ from the works over robot priorities by Oliver et al. (); Bennewitz, Burgard, and 

Thrun (2001, 2002); and Carpin and Pagello (2009). The planner needs to work such that the average time 

of travel for all the robots is as small as possible i.e. min(∑Ti)/n. At the same time the planner needs to 

ensure that no collision occurs. Hence Pi(t) ≠ Pj(t) ˅ 1 ≤ i, j ≤ n, i≠ j. 
 
Genetic Programming is extensively used evolutionary technique for problem solving. Here we represent 

the individual as a program and hence try to evolve it using the methodology of the evolutionary 

algorithms. The solution is obtained by executing the program so formed. Tree based representation of a 

program is a very common representation of individuals of genetic programming (J. R. Koza, 1992; Shukla, 

Tiwari, and Kala, 2010). The linear representation of the program of genetic programming gives rise to 

Grammatical Evolution. Here the individual is a sequence of integers. Every problem has its grammar, 

which represents the program syntax. The grammar is specified by Backus-Naur or BNF form. The 

generation of the phenotype solution from its genotype solution or sequence of integers takes place by 

selecting and firing rules specified in the grammar (O’Neil and Ryan, 2003, 2001). Our implementation of 

the Genetic Programming in this paper is similar to the general algorithm of grammatical evolution.  
 
The evolutionary algorithms are used for solving various kinds of problems. These algorithms however 

face problems when the dimensionality of the problem becomes very large. In such a case the optimization 

provided by these algorithms becomes very slow, with fairly large chance of the algorithm getting struck at 

some local optima (Kala, Shukla, and Tiwari, 2010a). Co-operative evolutionary algorithms or co-

evolutionary algorithms break up the problem into a number of smaller problems that together solve the 

main problems. The smaller problems have smaller dimensionality, and are hence very easy to be 

optimized. The different sub-problems or sub-modules evolve in parallel, which ultimately results in 

generation of very good modules that unite with each other to solve the problem well. Cooperation is 

encouraged between modules, and a module is given high fitness not only because it results in generation 

of higher fitness solutions, but also because it enables other modules to achieve high fitness value (Potter 

and DeJong, 1994, 2000; García-Pedrajas, Hervás-Martínez, and Muñoz Pérez, 2003).  
 
In this paper we first present a co-evolutionary genetic programming based planning of multiple robots. 

Each of the individuals has its own optimization process that is based on the principles of Grammatical 

Evolution. These all try to generate and optimize the paths of the individual robots. However these need to 

consider the possibility of collision between the robots, for which the factor of co-operation comes into 

play and has been induced in the algorithm. A master genetic algorithm runs to select the best paths of the 

robots, out of all the paths available in the individual optimizations. 
 
The major problem with the assumed scenario is the variable speed. This puts forward a number of 

scenarios, where sub-optimality may be possible without careful planning. Consider a big corridor with two 

robots A and B marching towards it. Consider maximum velocity of A being higher i.e. VA >> VB. Consider 

that robot B is closer to the corridor entry, and would enter it before A. But if robot B enters the corridor 

first, robot A would have to follow it, and both robots would be able to walk with a maximum velocity of 

VB. It may be clearly seen that optimal strategy would be in case B waits for robot A to enter the corridor, 

and follows it inside the corridor. In such a case both robots would get a chance to travel by their maximum 

velocities. Hence we implement the concept of wait for robot, where a robot may be asked to wait so that 

some other robot may cross.  
 
Optimization by evolutionary algorithms may get very complex in problems having too many dimensions 

and multiple modalities. In such a case it is often useful to use a local search strategy based on predefined 

heuristics that can aid the evolutionary algorithms. This saves the algorithm from likely convergence into 

local optima. The local search algorithm carries forward the task to converge the algorithm into some local 

or global optima, while the evolutionary algorithm does the task of locating the best possible regions, 

where the global optima may lie. In such a case the combined efforts of heuristics and evolutionary 

algorithms results in better optimization (Kala,Shukla, Tiwari, 2009). The same problem of complex 

optimization is prevalent in the present algorithm. Here the evolutionary algorithm tries to optimize the 

individual robotic path. In such a case also we use a local search strategy which tries to modify the path to 



make it smaller in length. Longer paths are replaced by smaller paths. For carrying forward this 

replacement, an external memory is reserved that stores the smallest paths between all pairs of crosses. This 

table is regularly updated as more paths are found.  
 
The novelty of the paper is threefold. We first propose a co-evolutionary genetic programming model for 

solving the problem. This model uses principles of cooperative evolution to generate paths that are optimal 

in time, by mixing centralized as well as decentralized planning. Secondly, we propose the model and 

issues with multi-speed, map based (single-lane) multi-robot motion planning. This includes the use of the 

wait for robot feature incorporated into the evolutionary approach. Thirdly we propose use of external 

memory for local optimization of the paths. This memory is initialized, updated, and queried for reduction 

in paths of individual robots.    
 
The paper is organized as follows. In section 2 we present some of the related works into the field. In 

section 3 we present the co-evolutionary genetic programming model of the algorithm. Section 4 presents 

the concept of wait for robot. Section 5 presents the memory based local search used in the algorithm. The 

experimental results are given in section 6. Section 7 gives the conclusion remarks.  
 
2. Related Works 
 
The entire paradigm of path planning of multi-robots involve a large set of issues that range from dynamic 

changes in the robotic plan, to validity of non-holonomic constants, and execution and memory time 

complexity. Oliver et al. (1999) give a general architecture of path planning in these scalable scenarios. 

They followed a decentralized approach of planning where every robot does its own independent path 

planning. The map is built centrally at start and all changes are continuously monitored and any needed 

correction is made. Possible collisions are resolved by the coordination module, that uses a priority based 

coordination with a higher priority robot allowed to make the collision prone move, while the other robot 

compromises or waits. Possible collisions are predicted be extrapolation of the motion of robots, and any 

possibility is marked by a check-point. One of the robots is allowed to move, while the path of other may 

be re-planned. 
 
Motion planning may be regarded as a part of the entire robotic architecture, for which again numerous 

models have been built. Asama, Matsumoto, and Ishida (1989) present a complete system for multi-robot 

planning, coordination, and control in their designed system ACTRESS (ACTor-based Robots and 

Equipments Synthetic System). In this system the authors demonstrate the mechanisms in which the 

different modules including sensors, processing, planning, manipulators, communication etc. come into 

play for intelligent and autonomous task accomplishment. The extension of their work can be found in 

(Asama et al. 1991) where the authors developed a multi-level path planning. The planning was different 

for static and dynamic cases. Special preventions were taken for deadlock avoidance that may take place 

many times in planning of multiple robots. The complete hierarchy of the system includes static path 

planning, use of local algorithm, use of mobile rules, task prioritization, deadlock avoidance by low-level 

deadlock solver, deadlock avoidance by high-level deadlock solver, and human operator expertise. 

Vendrell, Mellado, and Crespo (2001) presented a general framework for motion planning with multiple 

robots. They highlighted the need to plan, sense, and accordingly re-plan by every robot. The authors 

further present a hierarchical model of the various robot activities that range from high abstraction to low 

abstraction. The hierarchy includes mission, task, action, motions, trajectories, and robot order.  
 
A number of models have been made into the earlier works of the authors on single robots that revolve 

around evolutionary algorithms. In (Kala, Shukla and Tiwari, 2010b) a hierarchical implementation of a 

customized evolutionary algorithm was proposed. A number of evolutionary operators were defined to 

result in better convergence. The hierarchical nature enabled the robot to work in dynamic environment. 

The coarser evolutionary algorithm mainly looked at the static obstacles, and their optimality, the finer 

evolutionary algorithm tried to escape from all dynamic obstacles using a space-time graph map. In another 

work Kala, Shukla, and Tiwari (2010c) used evolutionary algorithm for generation of path in an 

incremental manner. Here the complexity of path or the number of turns that the path could have increased 



with time. The concept of momentum was floated which controlled the resolution with which the robot 

checked for the path feasibility and other metrics.  
 
The general approach used in our algorithm is of Evolutionary Algorithm, which is a member of the class 

of probabilistic algorithms, for which a bulk of research has been done. Kavaraki and Latombe (1997), 

Kavaraki et al. (2002) presented a method for multi-robot path planning called as the Probabilistic Road 

Map (PRM), which has since then been extensively modified and used for research. The algorithm consists 

of an offline phase and an online phase. In the offline phase the algorithm learns the map, and stores the 

summary about the paths between various points in a special data structure called as the road map. This 

step involves identification of a number of nodes that might represent difficult points in the configuration 

space, and are chosen by heuristics. The number of points is further increased by selection of points around 

these points. This selection may go on till required points are obtained, with the selection being weighted 

by a node’s difficulty or other selected heuristics. A local planning technique is used to swiftly compute the 

connectivity of these points to the other points. The collection of these vertices and edges makes the road 

map to use used for online planning. The online planner is query based which gets a query for a path and 

reacts to it by returning the shortest path based on the present map as well as the summarizations stored in 

the offline phase. This path may be further optimized by some local optimization technique, to increase the 

path optimality.   
 
Bohlin and Kavraki (2000) further extend the basic PRM to build a lazy PRM. The PRM does a large 

number of collision checks that usually results in a large wastage of time. In Lazy PRM the concept is to 

generate random nodes in the offline mode and try to connect each node to its neighbors for connectivity 

assessment. The feasibility of the paths is checked lazily in a coarser to finer manner. An initial lazy 

checking of the path feasibility reduces number of checks, at the same time giving an idea of the feasibility. 

If path is found to be feasible, it may be checked at a finer level as well. The in-feasible paths are enhanced 

by placement of the nodes. The PRM methods can be adapted to present a strong variance between central 

and de-central path planning with multiple robots. A comparison of centralized planning, decoupled 

planning with global coordination, and decoupled planning with pair wise coordination was done by 

Sachez-Ante and Latombe (2002). A large number of experiments of different number of robots with large 

degrees of freedom and scenarios were done. Experimental results confirmed that the requirement of robot 

dependency was a major factor behind the better performance of the coordination level.  
 
Clark (2005) used a probabilistic roadmap technique for solving the problem of motion planning of 

multiple robots. They used a single query based probabilistic roadmap planner. Here the author made a 

complete architecture comprising of software, communication, planning, and control where a robot could 

get the positional updates from all the other robots to get the complete roadmap and make decision. Here 

the author considered possibility of breaking of connectivity between two robots, resulting in generation of 

two unconnected sub-networks. The algorithm could track such changes and still make decisions of motion. 

 Another probabilistic implementation can be seen in the work of Clark, Rock and Latombe (2003) who 

solved the problem of path planning for multiple-robot space system. Their planning algorithm generated 

random points or milestones and attempted to reach one milestone from the other, till the location was near 

to the goal. Heuristics were used for the selection of the milestone, whose neighborhood became the 

possible location of next milestone. Re-planning was an integral version of the algorithm, as the map could 

change in real time as per availability of information. Combined part results of a single decentralized 

planning system are used to serve as milestones of the centralized planner that checks for feasibility in 

combined motion.  
 
Svestka and Overmars (1998) present a probabilistic solution for solving the problem of multi-robot path 

planning. In this approach they define the paradigm of coordinated graphs, which allows only a collision 

free motion of the mobile robot. The robot is not allowed to collide with any of the moving robots. Their 

approach is partially central in nature, where the major task of planning lies with a central authority, on 

whose decisions the individual robots are made to move. The entire configuration space is made discrete 

with respect to the movement of the multiple robots. This the authors do by the concept of flat graphs, 

which takes into account the prospective motion of multiple robots. Observing the highly time consuming 

nature of the algorithm and the low scalability to the number of robots (large attributed to the central 



planning mechanism), the authors further extend their work by using multi-level graph clustering. Here the 

original graph is decomposed into a number of independent sub-graphs. This layered solution to the 

problem limits the number of nodes of the graph, which ultimately affects the time complexity of the 

algorithm in an exponential manner. The path hence generated by the algorithm is given some 

characteristics of non-central nature by introduction of mechanisms of smoothness of the path, for greater 

optimality. This is done by the application of a local planning algorithm for every robot in motion. 
 
Dongyong et al. (2006) used an evolutionary approach to solve the problem. Here the paths kept improving 

with time. The authors used a chaos based evolution, where the individuals were disturbed by some factors 

depending upon user set parameters. If the disturbed individual resulted in a better fitness, it was retained 

else the parent was retained. The crossover and mutation rates were adapted with time as per the fitness 

value. The authors optimized the navigation time, path length, and path smoothness. Kuffner and LaValle 

(2000) present an interesting application of another probabilistic algorithm called RRT. Here the RRT 

Trees start exploding both from the source as well as from the goal. The intersection of the two trees hence 

provides the path early. Another deviation from the conventional RRT Trees that the authors present is that 

the exploration of any node continues to take place in the same direction till the goal, an obstacle, or map 

wall is met. This results in heavy exploration at every step of the algorithm, and the general ideal goes a 

long way in enabling the RRT escape from a local minima.    
 
Wang and Wu (2005) make use of cooperative co-evolution in solving the problem of multi-robot path 

planning. This is primarily an evolutionary approach, where every robot has its own evolution. The 

evolution of all robots are shared, coordinated and communicated by a central mechanism. Every robot, in 

its evolution, enjoys a fitness that is a function of the length of path travelled and the constraints violated. 

The constraints refer to the individual robot constraints as well as the constraints to avoid collision with 

other robot. Slusny, Neruda and Vidnerova (2010) used evolutionary radial basis function networks and 

reinforcement learning for the task of localization and motion planning of a robot. The models were later 

analyzed by rule extraction technique, which converted the model to a rule based model for easy analysis 

and understanding.  Kala, Shukla, and Tiwari (2010d) also used genetic algorithms for the optimization of a 

fuzzy inference system that was used for motion planning. This approach was performed at two levels. At 

the first level a probabilistic A* algorithm was used for making a rough sketch of the path, which was later 

on made detailed by the fuzzy based planner. In another work Kala, Shukla and Tiwari (2011) used 

evolutionary algorithms to make the rough sketch of the path, which was later traversed by the fuzzy 

planner. In this work again the concepts of incremental evolution were used.  
 
Another novel part of the algorithm was of variable speeds, which again has its inspiration from literature, 

with numerous related models. Kolushev and Bogdanov (1999) take into account the speeds of the moving 

robots while deciding their path in a graphical representation of the map or the configuration space. The 

robots may speed down or speed up below the maximum allowable velocity to avoid collisions. At any 

edge, the speed is also taken account, and correspondingly both the lowest path length plan and the shortest 

duration plan may be found out. A simple graph search algorithm may be used for planning. Rules are 

made to alter the velocity such that no collision occurs at the nodes as well as the edges of the graph.  
 
Priority based schemes have been extensively used for motion planning. Bennewitz, Burgard, and Thrun 

(2002) proposed a prioritized A* algorithm to coordinate the motion of multiple robots. Here the planning 

was done using a simple A* approach. Every robot had a priority, based on which the motion of the robots 

were carried out in case of possibilities of collision. The authors used a simple hill climbing approach to 

compute the best combination of priorities for the overall movement of robots.  Priority is a major method 

for solving collisions in a multi-robot motion planning system. Bennewitz, Burgard, and Thrun (2001) 

consider the problem of finding the optimal priority scheme as the given problem. Their approach uses a 

combination of hill climbing and random search to set the correct priority scheme of the robots. Every 

priority scheme is judged by the optimality of paths generated in terms of length. At any step random 

exchange of priorities takes place. If these swaps result in better optimality, the change is retained, else 

rejected. The entire process is started multiple times from different configurations to escape from being 

trapped at local minima. We differ from these approaches by the fact that in our case the robots vanish after 



reaching their goals, and hence do not restrict other robot movements. The concept of priority here is 

implemented by the concept of wait for robot.  
 
3. Cooperative Genetic Programming 
 
The basic working of the algorithm is a cooperative genetic programming planner. This planner operates in 

two levels: master and slave, similar to the architecture in (Moriarty, 1997; Moriarty and Miikkulainen, 

1997; García-Pedrajas, Hervás-Martínez, and Muñoz Pérez, 2003). The slave genetic programming is 

basically a decentralized path planning for all the various robots in the system. Using this level the system 

tries to generate better and better paths for the individual motion of the various robots. The second level is 

the master level. Each robot in the slave has numerous genetic programming individual over which it tries 

to carry forward the optimization. The master is simply a genetic algorithm that tries to select the best 

combination of paths for the various robots, such that the overall path of all robots combined is optimal. In 

simple terms it may be regarded as the slaves optimize the individual robot paths, and the master optimizes 

the net work plan of all robots. However it needs to be noted that the slaves are conscious of cooperation 

amongst each other to generate collision free paths, and to help each other to optimize. Section 3.1 

discusses the slave genetic programming. Section 3.2 presents the master genetic algorithm. The complete 

algorithm along with the interaction between the master and slave levels is done in section 3.3 
 
3.1 Slave Genetic Programming 
 
The slave genetic programming operates at the level of individual robots for the generation of their paths, 

which when combined with the other paths of the other robots result in an overall optimal movement of the 

entire pool of robots. Each robot has its own instance of genetic programming which comprises of multiple 

individuals representing the potential path of movement of the robot from source and possibly finishing at 

the goal. 

 

Based on the principles of Grammatical Evolution (O’Neill and Ryan, 2001, 2003), we assume that the 

individual representation is in form of sequence of integers. In this manner we adopt a linear representation 

of the individual representing the path of the robot. Each integer denotes the movement of the robot. We 

know that once the robot is traveling on a straight path, it would continue to follow the same path, until it 

has got some point where it is possible to make a turn. The turns can only me made at some crossing, where 

multiple lanes meet each other. Whenever the robot meets a crossing, it needs to decide which way it has to 

follow. The number of ways possible may vary depending upon the type of crossing. The decision to which 

of the path is to be followed is decided by the individual, which uniquely determines the path of the robot. 

Before we discuss this conversion of the genotype or the sequence of integers to the phenotype or the 

robotic path, let us formally define some terms. 

 

The direction of motion of any robot Ri may be given by d={left, right, up, down} representing the four 

possible directions of motion. We assume the various paths to criss-cross each other only in multiples of 

right angles. A robot Ri traveling in direction d at a point (x,y) is said to be at a crossing if any path criss-

crosses the path of traversal of the robot in direction d at point (x,y). It may be verified that the definition of 

cross does not depend upon direction d. Hence 
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Each of the marked positions is a crossing as shown in figure 1. The robot is said to be struck at the 

location (x, y) while moving in direction d if it is not possible to move in the same direction. This may 

happen because of reaching of map limits, end of the road, or having some static obstacle ahead. Hence 
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 We are further interested in the number of possible moves (along with the actual moves) at every crossing, 

which would be used by robot for decision making. A robot would normally not like to traverse back into 

the same direction in which it was traveling since the traveled path would be wasteful. This however may 

be needed if the robot was struck. Let paths possible at any crossing (Cross(x, y)=true) at location (x,y) and 

direction d may hence be given by D(x,y,d), where D(x, y, d)   {left, right, up, down}. Let size(D) denote 

the total number of elements in the set or the total number of moves possible. Hence 
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Here pt(x,y) is a function that looks into the possibility of all the moves {left, right, up, down} and returns 

the set of possible moves. ~d is the direction of motion opposite to d.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Various types of crosses. The figure depicts the numerous possible crosses that may be possible 

in a map where vertical and horizontal roads criss cross. The figure shows crosses with 4, 3, and 2 paths.  

 

Let the genetic individual for robot Ri (that is the i
th

 instance of genetic programming) be given by I
i
<I

i
1, I

i
2, 

I
i
3, … I

i
o>. We need to convert the genotype I

i
 into the phenotype or the robotic path. Let ci be the pointer 

which points towards the integers in genotype and returns them whenever queried for decision making. We 

further define moveA(x, y, ci) as a function that returns the initial direction of motion of the robot while 

robot is at position (x, y) with pointer ci. Here the robot is allowed to take any possible way. Further let 

moveB(x, y, d, ci) be a function that returns the next direction of motion of the robot while at position (x, y) 

moving with direction d with pointer ci. Here the robot is not allowed to move back in direction it is coming 

from, unless it is struck. We need to first compute the initial direction of motion of the robot. We take a 

pointer ci initially set to the first integer (ci = I
i
1). The robot is initially located at its source P(0)=Si. For the 

source we select the possible directions of movement of the robot. This is given by D=pt(x, y). Here (x, y) 

=Si. The number of possible moves are given by size(D). We select the k
th

 move (d=Dk) in D where k is 

given by ci mod size(D) as the first move of the robot. Hence 

 

moveA(x, y, ci) = Dk,          (4) 

D=pt(x, y),  

k = ci mod size(D)  
 

The pointer is updated to point to the next location (ci=I
i
2). Now the robot is made to move in the same 

direction (d) till it reaches a crossing (Cross(x, y)=true) or it gets struck (Struck(x, y, d)=true). If either of 

these conditions is met, the robot has to make a decision regarding the next move. For this it first queries 

the total number of moves possible (D(x, y, d)) and then uses the integer pointed out by the pointer ci to 

Crosses 



decide which one of these moves is to be executed. Let the move be moveB(x, y, d, ci) which is given by k
th

 

move in D (d=Dk) where k is given by ci mod size(D). Hence 

 

moveB(x, y, ci) = Dk,          (5) 

D=D(x, y, d),  

k = ci mod size(D)  
 

The pointer is further incremented to point to next integer. In this mechanism the algorithm keeps iterating 

with decision being made at every crossing and when the robot is struck.  

 

The motion of the robot may stop in either of two possible ways, either the robot reaches its goal, or the 

genotype is short of integers that is crossing after ci=I
i
n is to be processed. In case the stop is due to the 

termination of integer sequence, we reset the pointer (ci=I
i
1) and allow the algorithm to proceed. This reset 

may however take place only once in the entire motion of the robot. In this manner the genotype may be 

finally converted into the phenotype. The complete algorithm is summarized in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2: Conversion of a genetic programming genotype to robotic path phenotype. The algorithm 

takes an individual which is a collection or integers. The robot is moved in its computed direction. 

Whenever any cross is encountered, the pointed integer is consulted to get the next direction of motion, and 

the pointer is updated. The algorithm terminates if goal is found or when the individual terminates twice.  
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We study the conversion by an example. Let the map be as given in figure 3. The start position and goal of 

the robot is marked as shown in figure. Let the genotype be given by <2, 5, 3, 5, 2, 1, 3, 3, 3, 4, 5, 2, 2>. 

Initially the pointer is at 2. The possible moves are {down}. The algorithm selects the 2 mod1 i.e. the 0
th

 

move which is down (Note that ordering starts from 0 and not 1). The robot marches down, until it reaches 

cross A. Here possible moves are {right, down}. The pointer is at 5. The robot selects 5 mod 2 i.e. 1
st
 move, 

which comes out to be down. The robot marches down till cross B. Here the possible move is {right}. 

Pointer is at 3. The move selected is 3 mod 1, i.e. right (0
th

 move). The robot comes to point C. Now 

possible moves are {right, down}. Pointer is at 2. The move selected is 2 mod 2, i.e. right (0
th

 move). Robot 

moves till cross D. Here possible moves are {up}, which is selected by pointer at 1.The robot travels up and 

reached cross E for which the possible move is only right. This is selected by pointer at 3. This makes the 

robot reach cross F with possible moves {right, down}. Pointer is at 2. The selected move is 3 mod 2 i.e. 

the first move or down. Robot moves in the same direction until it reaches cross G. The rest of the motion 

may be verified accordingly. At the end the robot will terminate its journey at goal, with some genes to 

spare.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Sample map for conversion of genotype to phenotype. Figure is a sample map that shows the 

path used by a randomly generated robot for motion from source. The path traversed comes out to be 

Source → A → B→ C→ D→ E→ F→ G→ H→ I→ Goal 

 

The next important task to be carried out in the implementation of the slave genetic programming is the 

genetic operators. We use two genetic operators for the algorithm, crossover and mutation. Crossover is 

applied to the top elite individuals. The number of individuals that undergo crossover is given by cross x 

popSize, where cross is the crossover rate and popSize is the total number of individuals in the population 

pool. These individuals are paired in groups of 2 and crossover is applied to each paid. Scattered crossover 

technique is used for the generation of two children from every pair of parents. The generated children 

replace the two poorest fitness individuals in the population pool. The mutation operator is applied to rest 

of the individuals in the population pool. All these left individuals undergo change in their genes, where the 

change is given by a uniform mutation. Here the gene value is changed to a random value with a 

probability given by the mutation rate. 

 

The last part left in the implementation of the slave genetic programming is to have a fitness evaluation 

technique. We have already seen the mechanism of conversion of a genotype or an integer sequence into its 

phenotype or the robotic path. The fitness for any individual is measured by two factors denoting the 

individual and cooperative aspects of the overall path planning. The first factor for robot Ri (F
i
1) measures 

the fitness of the individual path. Using this measure, an individual tries to generate shorter and shorter 

paths which may ultimately contribute towards the overall optimality of all the robots. This fitness is 

measured by the total length of the path. In case the robot did not reach the goal, a penalty is added 

proportional to the distance between the last point touched by the robot and the actual goal location. This 

may be given by 
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F
i
1=  li + α || Pi - Gi ||         (6) 

Here li is the total length of path, Gi is the goal and Pi is the last point touched by the robot. α is the penalty 

constant canned as the penalty constant for non-reach ability of goal. 

 

By optimizing based on this objective it is highly likely that individual robots disregard the cooperation 

factor which is a major factor in co-evolution and enables different modules to develop characteristics to 

contribute well to the overall problem. This factor is served by the other factor of the fitness function (F
i
2). 

In this factor we look into the possible collisions between the robot with other robot, or the factors by 

which this path results in sub-optimal paths of other robots. The path of this robot is a part of multiple paths 

of the other robots. These paths are generated by the master as we shall see later. We select the best e 

individuals of the master. Each of these individuals specifies the paths of each of the robots. We simply 

replace the path corresponding to robot Ri in all these e individuals by the current individual. We note the 

difference in the fitness value, which is a measure of F
i
2. This may be hence given by 
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Here Xj is the j
th

 best individual of the master. i
i IRj

X
,

denotes best j
th

 individual of master with the path 

of robot Ri replaced by the current genotype I
i
. The net fitness may be given by  

 

F
i
=F

i
1 + F

i
2          (8) 

 

3.2 Master Genetic Algorithm 

 

While the slave genetic programming does the task of generation of good paths for the individual robot, 

which have already taken the factor of cooperation into them, the task left is the evolution of the overall 

working strategy of the entire algorithm. This task is done by the master genetic algorithm, which decides 

how each and every robot is to move.  

 

The first task is the individual representation of the master genetic algorithm. The individual is a set of n 

pointers, each pointing to some individual of the slave genetic programming. Let these pointers or the 

genetic algorithm individual be given by <J1, J2, J3, … Jn>. Here any pointer Ji points to one of the 

individuals of the i
th

 slave genetic programming (I
i
) that represents the path of the i

th
 robot. This may be 

easily understood from figure 4.  

 

The next task is the application of the genetic operators for the individual. Similar to the slave genetic 

programming, we use the genetic operators of crossover and mutation in this technique. The crossover 

mixes two parent individuals and generates two children. These two children replace the two weakest 

individuals of the genetic algorithm. A scattered crossover technique is followed in which every child 

randomly takes half of the pointers from first parent and the other half from the other parent. The mutation 

operator simply changes the genes of the individual. The gene is simply a pointer to some individual of the 

slave genetic programming. The mutation deletes an existing pointer and makes it point to some other 

individual in the genetic programming. Preference may be given to the newly created individuals of the 

genetic programming.  

 

The last task to be carried out is the fitness evaluation. The fitness evaluation of the master genetic 

algorithm simply returns the average traveling time of each of the robots. The traveling time of the robot is 

measured by the time that the robot takes to reach its goal. However the master genetic algorithm needs to 

ensure that all the paths are traversed without any kind of collision between the robots. For this a 

simultaneous simulation of all robots is done, knowing that the various robots have different speeds. It is 

further possible that some of the robots do not reach their goal. For both these aspects a penalty is added to 

the fitness function. The resultant fitness function of the master genetic algorithm hence becomes.  
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Here Ti is the time the robot Ri reaches its goal Gi, Pi is the last point touched by the robot in its journey, α 

and β are penalty constants (β > α), C is the time first collision occurs (0 is no collision occurs). α is called 

as the penalty constant for non-reach ability of goal. β is called as the penalty constant for collision.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Individual representation of master genetic algorithm. Every individual of the master genetic 

algorithm points to an individual of the slave genetic programming. Figure represents one individual of the 

master genetic algorithm 

 

 

The penalty constant for collision (β) is usually kept higher than the penalty constant for non-reach ability 

of goal (α). This is to encourage collision free movements. It would be better not to have collisions that not 

to have a robot reach its goal. The path may be feasible only when both these factors are zero, but 

characteristic positions of robots in the map may result in scenarios where it is not possible to have all the 

robots have a collision free journey to their goals. 

 

3.3 Algorithm Outline 

 

We have already discussed the individual master and slave evolutionary algorithms. In this section we 

briefly give a combined picture of these two algorithms. The complete algorithm is presented in figure 5. It 

may be easily seen that the algorithm is iterative in nature, where both the evolutionary algorithms run in 

parallel. They hence share a common stopping criterion. A unit iteration of all the evolutionary algorithms 

is executed in parallel. This gives all of these a chance to evolve their population as per the changing 

scenarios and findings. It may be noted that all the various evolutionary algorithms do not run in isolation, 

but are rather dependent on each other. A boost in the fitness value of the master genetic algorithm by 

selection of some individual from some slave genetic programming may mean the slave genetic 

programming being re-directed to produce different kinds of individuals. Similarly if some new individual 

produced by one of the slave genetic programming results in improvement of the overall path being 

controlled by the master genetic programming, it may redirect the master to produce more individuals of 

the same kind. We have already discussed about the factor of cooperation between the various slave genetic 

algorithms.  

 

4. Waiting for Robot 

 

The algorithm framework presented in section 3 is self-sufficient to carry planning of multiple robots, but it 

fails on a number of scenarios for which we introduce the concept of waiting for robot. Consider the case 
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where a slower robot is following a higher speed robot. This scenario was discussed earlier and was 

presented in figure 6 to ease the rest of the discussion. In this scenario the path of the two robots are shown. 

It would be better if the slower robot would have waited at point A for the faster robot to move. In such a 

case the slower robot would have followed the faster robot which naturally means a better moving strategy 

minimizing the collective motion time of all the robots.  In reality with multiple criss-crosses and multiple 

robots there can be complex scenarios where one robot waiting for another robot may be fruitful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: The basic evolutionary algorithm 

 

We informally state that wait may only be performed at the crossing (cross(x, y)=true); more precisely at a 

unit step from crossing, since we are to leave the crossing free for the moving robot. Waiting at any other 

location other than crossing may be equivalent to waiting at some crossing. Further the wait must always 

end with some robot crossing the point of crossing for which the robot is waiting. It is natural that there is 

no use waiting more than that, unless the robot is actually waiting for another robot after which it plans to 

move. This would be equivalent to the robot waiting for the second crossing robot with no necessary 

relation with the first crossing robot. It may be hence noted that the concept of waiting for robot at crossing 

is important and may further boost the performance of the model presented in section 3. We hence formally 

define the concept and modify the algorithm presented in section 3 as per its requirements.  

  

For all instances of genetic programming, 

initialize their individuals 

Initialize master genetic algorithm individuals 

While stopping criterion is not met 

For all instances of 

slave genetic 

programming 

Selection 

Crossover 

Mutation 

Selection in Genetic Algorithm 

Crossover in Genetic Algorithm 

 

Mutation in Genetic Algorithm 

 

Fitness Evaluation in Genetic Algorithm 

 

 

Fitness 

Evaluation 

End 

Return Best individual 

 

End 



We defined paths possible at any crossing (Cross(x, y)=true) at location (x,y) and direction d be given by 

D(x,y,d), where D(x, y, d)  {left, right, up, down}. Now the robot may be additionally asked to wait at 

some crossing and hence the option is added to D(x,y,d). The modified value is given by Dmod(x, y, d) = 

D(x, y, d) U {wait}. Here wait signifies that the robot is being asked to wait for a robot. size(Dmod) denotes 

the total number of elements in the set or the total number of moves possible. Consider the genotype 

pointer is pointing towards any location ci at any instance of time. Now the move made by the robot 

moveB(x, y, d, ci) is given by  

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: The problems with planning with multiple speeds. The figure shows two robots RA and RB 

moving with velocities VA and VB (VA >> VB). If RB enters the corridor first, RA will have to follow for the 

rest part of the journey with reduced speeds. Optimal path has RA entering before RB.   

 

moveB(x, y, ci) = Dk,          (10) 

D=Dmod(x, y, d),  

k = ci mod size(Dmod)  
 

Similarly the first move of the robot is modified to work over Dmod in place of D. The restriction however 

here is that the first move cannot be a wait. This is because it is not necessary that the robot is initially 

located at a crossing, which is a requirement for the wait move. The first move moveA(x, y, cj) is hence 

given by  

 

moveA(x, y, ci) = Dk,          (11) 

D=pt(x, y),  

k = ci mod size(Dmod)  
moveA(x, y, cj)={wait}   j<i. 

 

More precisely the robot has to wait just before the crossing and not on the crossing. In case it waits on the 

crossing, it would prohibit any robot to pass by including the robot for which it is waiting to pass by. Hence 

the decision towards whether the robot has to wait or not needs to be made before the robot enters into 

crossing. This may not be the immediately preceding step of crossing (as robots have fractional velocities) 

but the step after which the robot enters anywhere within the crossing region. We define the penultimate 

position of the robot (x,y) such that any step further from this in direction d would result in the robot 

entering into the crossing area. Let this be given by pen(x,y,d). Now as soon as any robot enters into pen(x, 

y, d), it queries the next crossing cross(x’, y’, d) and gets the move which it would be expected to make 

moveB(x’, y’, d). Here (x’, y’) is the location of the next crossing (in this query the pointer ci is not altered). 

In case this move comes to be wait (or moveB(x’, y’, d)={wait}), the robot does not move and waits at (x, 

y) and the pointer ci is incremented (or the wait move is already executed). Note that after the robot is 

allowed to move, it would reach the crossing and the next move would be made as per the new integer 

pointed by ci. In case the move does not come to be wait, the robot continues its motion. 
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Further when a robot is waiting, it must always wait for some robot that is guaranteed to cross from the 

crossing of wait. This ensures that we know exactly about when the robot may be allowed to resume its 

journey. Let (x, y) be the location of a robot Ri penultimate to crossing. Let (x’,y’) be the location of the 

crossing. Further let (x’’, y’’) be the position next to crossing (outside the crossing area) where Ri would be 

moving after wait is over. Since we know the complete genotype of motion of Ri, we can easily compute its 

entire path, excluding the waits which are dependent on the movement of the other robot and cannot be 

computed in isolation. We search for robots Rj (j ≠ i) which are presently moving and would be found at 

location (x’’, y’’) at some instance of time ahead but not after Ri reaches its goal if allowed to move 

without waits. Again it be noted that complete path of Rj is already known excluding the waits. If we get 

some Rj such that Rj is moving and Rj crosses (x’’, y’’) at some time ahead but not after Ri reaches its goal 

if allowed to move without waits, we state that the robot Ri will wait for Rj (Ri → Rj). The current state of 

Ri is labeled as waiting, and all it is not allowed to move further. Only after Rj crosses location (x’’, y’’), 

the robot Ri is allowed to move. In case no Rj (j ≠ i) satisfies the criterion, the wait of Ri is cancelled and its 

normal motion continues. 

 

It is important to put the check that Rj should be moving to escape from deadlock. If this condition is not 

checked it would be possible to have a situation Ri → Rj and Rj → Ri, in which case both Ri and Rj are not 

moving and waiting for each other. More generally it would be possible to have a scenario Ra → Rb → Rc, 

→ Rd, … → Ra, which is a deadlock.  

 

In this manner we may be able to model multiple deadlock free scenarios with multiple robots waiting in 

any complex or simple manner. Hence by this introduction of wait in the problem modeling, we are able to 

generate more flexible movement strategy of the multiple robots. 

 

5. Memory based Local Search 

 

The model of the algorithm discussed in section 4 may take a reasonably long time to carry out the task of 

optimization. It is a common technique to assist the evolutionary process by some heuristic means. In this 

algorithm we do this by storing a lookup table at a dedicated memory and use the same for optimization. 

The purpose of the lookup table is to store information about shortest paths between crosses. In case the 

path of any of the robots happens to be larger than the path stored in this lookup table, we may easily 

replace it by the smallest path already known. In such a case the robot would reach the goal in a much 

smaller path and if the modified path has no collisions, the overall optimality of the solution may be 

enhanced. The lookup table enables the robot to quickly attain the optimal path, while it may be reasonably 

away from the same. 

 

Another use of the lookup table is to enable cooperation amongst the robots. If one robot finds an optimal 

path between any pair of crosses, it must be able to share the same with the other robots, to enable them 

benefit from the finding. By making a lookup table if a robot finds the smallest path between any pair of 

crosses (as per the current exploration), it stores it into the lookup table which may be accessed by all the 

other robots if they need to go between the same pair of crosses in their journey.  

 

The lookup table or memory is supposed to store smallest paths between crosses. Suppose that there are v 

crosses (cross(x, y)=true)in the system. We select a total of η (η ≤ v) crosses randomly from the available v 

crosses that participate in the lookup table. η decides the size of the lookup table. The lookup table is a data 

structure that stores the smallest path between any of these crosses, where each cross is defined by the robot 

position (x, y) and direction d . Let the selected crosses be (V1, V2, …. Vη). The lookup table stores the 

minimal path length Val(Vi, Vj) between from cross Vi to cross Vj. It further stores the actual set of 

genotype integers that result in the generation of smallest path P(Vi, Vj) from cross Vi to cross Vj. 

 

One of the tasks associated is the initialization and update of the lookup table. Initially we set  
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P(Vi, Vj)=NIL          (13) 

 

As we proceed with the algorithm, we get multiple paths on converting the genetic individual genotypes to 

corresponding phenotype paths. For the converted paths we check all pairs of crosses for possibility of 

shorter paths. Hence  

 

Val(Vi, Vj) = min{ length(P’Vi → Vj), Valold(Vi, Vj)}   Vi and Vj in generated path P, Vj comes after Vi (14) 

 

Here Valold(Vi, Vj) is the previous value and Val(Vi, Vj) is the updated value of the data structure. 

length(P’Vi → Vj) is the length of path between Vi and Vj in P’. Similarly the path needs to be modified. 

Hence we get 
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In this manner the lookup table is ready and keeps getting updated as newer paths are found. The last part 

left is to use the table as the local search of the individuals. For any path of the slave genetic programming 

we apply an additional operator reduce that attempts to shorten the path of the robot with a probability red. 

If the probability red is very low, there is almost no replacement and the factor of local search is almost 

lost. In case the factor is very high, it is likely that the individual slave genetic programming algorithms 

keep developing characteristics as per the characteristics in the lookup table, and the overall algorithm 

might get converged at some local minima. 
 

For any path in its genotype form which needs to be reduced, we randomly try to select pairs (Vi, Vj) in the 

path P’ of the robot, such that P’Vi → Vj > Val (Vi, Vj). For this path we replace the genotype integers from 

Vi to Vj by P(Vi, Vj). Suitable genes may be added at the two ends of the path. The previous path P’ (S → 

Vi-1 →Vi → Vj → Vj+1 → G) hence becomes (S → Vi-1 →P(Vi, Vj ) → Vj+1 → G) where S is the source and 

G is the last pointed touched by the robot. If no Vi, Vj satisfy the criterion, that is the path is optimized as 

per the lookup table, then no actions take place by this operator. The complete operation may be repeated 

over a number of times, as it is likely that the generated path may further be reduced by the lookup table.  

 

In this manner the application of this additional operator to the genetic programming individual may result 

in an enhanced optimization to the problem, considering the reasonably complex nature of the problem. 

This plays a major role in giving good results early. 

 

6. Results 

 

The algorithm was tested on a simulation tool built in JAVA. The complete algorithm was coded in 

multiple modules which included the master genetic algorithm, slave genetic programming, and the 

operations over the individuals of these two evolutionary techniques. A simulation tool used the genotype 

of the evolutionary technique to simulate the complete system and generate the necessary phenotype paths. 

This was done separately for both the master and the slave evolutionary techniques. A JAVA Applet based 

GUI client was built that used multi-threading to show the optimal motion strategy of all the robots, as 

calculated by the algorithm. The maze-like map was given to the algorithm in a form of a BMP image. The 

paint utility was used for the generation of the map.  

 

Maze-like maps were used for all the testing experiments. The robots could only move in four directions. 

Hence in these maps it is not necessary that the optimal path lies close to the straight line joining the source 

and the goal, which would have been the case for robots which can move in multiple directions. If the 

motion is to be made from one corner of a square to its diagonally opposite corner, in these maps it makes 

no difference whether the journey is made close to the diagonal joining the corners, or using the vertical 

and horizontal edges. The distance of travel (which would come out to be equivalent to the Manhattan 

distance) would be the same. For the same reasons the map used for testing purposes had a number of turns 

such that the final optimal path between any source and goal is large and complex enough.   

 



The algorithm was first simulated for 2 robots. The intention was to check the path optimality of both these 

robots, as well as their cooperation to figure out a collision-free path. In order to ensure a complex overall 

path, the two robots were given diagonally opposite source and goals. Further to make collisions move 

likely, the source of the first robot was made the goal of the other, and vice versa. The first robot was 

initially located at (0, 2) and had to reach a goal (24, 23). The other robot was initially placed at (24, 23) 

and had to reach a goal of (0, 2). The speed of the two robots was 0.5 and 0.3. The simulation was carried 

out for a total of 20 iterations. The master genetic algorithm had a population size of 400. The mutation rate 

was fixed to 0.1. The top 40% individuals were used for the crossover operations. The rest individuals were 

generated by mutation operation. The genetic programming had a population size of 250 individuals. The 

mutation rate was 0.1. Here the top 20% individuals were used for crossover, the rest being generated by 

mutation. The individual had a size of 25 real numbers or genes. The penalty constant for not reaching goal 

was 100, and the penalty constant for collision was 1000. The algorithm, upon simulation generated the 

paths, which were displayed. The parameters and results are summarized in table 1. The motion of the 

robots along with time may be seen in video 1. The general motion of the robots is also given in figure 7 for 

ease of discussion.  

 

Table 1: Summary of situation and results for simulation with 2 robots 

 

S. No. Factor Robot 1 Robot 2 

1. Source (0, 2) (24, 23) 

2. Goal (24, 23) (0, 2) 

3. Speed 0.5 0.3 

4. Reached Goal Yes Yes 

5. Collision No No 

6. Time 142 383 

7. Path Length 66 115 

 

  
Figure 7(a): Path traced by robot 1 for 

simulation with 2 robots 

Figure 7(b): Path traced by robot 2 for 

simulation with 2 robots 

 

It can be easily seen that as per the set locations, the collisions between the robots was natural. In this case 

the robots made use of the wait feature and hence first robot waited for the second robot at point A (shown 

in figure 7). This enabled the two robots to move to their own goals. It may again be easily seen that wait 

can only be applied when the robots do not go in opposite directions. Suppose a robot is waiting at a cross, 

on the way where the other robot wants to go to. It is natural that there would be a collision, since the 

moving robot would collide with the waiting robot. Further we observe that the speeds of the robots play a 

big role in deciding the path. The paths for same set of parameters would turn out to be different if the 
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velocities are changed. The velocities decide the possible points of collision, to which the colliding robots 

cooperate to find a collision free strategy.  

 

Table 2: Summary of situation and results for simulation with 3 robots 

 

S. No. Factor Robot 1 Robot 2 Robot 3 

1. Source (0, 2) (24, 23) (23, 0) 

2. Goal (24, 23) (0, 2) (1, 24) 

3. Speed 0.4 0.7 0.8 

4. Reached Goal Yes Yes Yes 

5. Collision No No No 

6. Time 166 167 71 

7. Path Length 66 117 57 

 

  
Figure 8(a): Path traced by robot 1 for 

simulation with 3 robots 

Figure 8(b): Path traced by robot 2 for 

simulation with 3 robots 

 

 
Figure 8(c): Path traced by robot 3 for simulation with 3 robots 
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The other execution was carried over the same map. To test the algorithm performance in higher number of 

robots, we added another robot to the simulation. So there were a total of 3 robots that tried to find their 

goal from the starting initial positions. The evolutionary parameters were kept same as the previous run. 

The source of the first robot was (0, 2), while its goal was (24, 23) and its speed was 0.4. The second robot 

had the source as (24, 23), goal as (0, 2), and speed 0.7. The third robot had source (23,0), goal (1, 24) and 

a speed 0.8. The simulation was carried out and the results were displayed using the GUI tool. The 

parameters and results are summarized in table 2. The motion of all the robots is given in video 2. The 

results are further drawn in summarized form in figure 8.  

 

Table 3: Summary of situation and results for simulation with 4 robots 

S. No. Factor Robot 1 Robot 2 Robot 3 Robot 4 

1. Source (0, 2) (24, 21) (23, 0) (1, 24) 

2. Goal (10, 24) (23, 0) (1, 24) (24, 21) 

3. Speed 0.6 0.8 0.7 0.8 

4. Reached Goal Yes Yes Yes Yes 

5. Collision No No No No 

6. Time 112 57 81 88 

7. Path Length 67 46 57 71 

 

  
Figure 9(a): Path traced by robot 1 for 

simulation with 4 robots 

Figure 9(b): Path traced by robot 2 for 

simulation with 4 robots 

  
Figure 9(c): Path traced by robot 3 for 

simulation with 4 robots 

Figure 9(d): Path traced by robot 4 for 

simulation with 4 robots 
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Here as well we see that every robot tried to simultaneously cater to two needs, to find an optimal path, and 

to find a collision free path. It is evident that there are limited options or paths, and hence an optimal path 

may not be collision free and vice versa. An overall solution is hence difficult to obtain. It may further be 

seen that speed is a major factor. Consider the point A as shown in figure 9. If robot 1 traveling from top 

left corner was traveling faster, it would have resulted in some collision with robot 2 traveling from bottom 

right corner. This would have resulted in either of the robot waiting, or both of them force to recalculate 

their paths.  

 

We further test the scalability of the algorithm with more robots. The next simulation involved 4 robots. 

The initial locations of the four robots were (0, 2), (24, 21), (23, 0), and (1, 24). The goals were specified as 

(10, 24), (23, 0), (1, 24), and (24, 21). The speeds were set to be 0.6, 0.8, 0.7, and 0.8. The evolutionary 

parameters were kept same as the previous run. The result in this case is given in video 3, and the same is 

summarized in figure 9. The parameters and result statistics is given in table 3.  

 

It may be seen that though the modeling scenario was reasonably complex with multiple robots that were 

supposed to find their way out to the goal, the algorithm was able to generate these paths for all robots. All 

the robots could reach their goals in a reasonably optimal path. It may be possible for better paths to exist 

or the individual robots, but this may lead to collisions and hence needs to be avoided. The factor of 

optimization is the average running time of the robots, which is optimal in this case. It may be emphasized 

that every addition in robot means an immense increase in possibilities at the coordination level. Two 

robots may only need to ensure that they somehow do not collide, but multiple robots can interact in 

plentiful ways. We may avoid collision between two robots by some change in their paths, but the changed 

paths might result in more collisions with any of the other robots. Hence a very complex interaction 

amongst robots makes the problem difficult.  

 

The last experiment was done using 5 robots. The locations and the speeds of the robots were changed. The 

source of first robot was (2,0) and goal was (10, 24). The speed of this robot was 0.6. The second robot had 

a source of (24, 21) and goal of (23, 0). The speed of the robot was 0.8. The third robot was at (24, 3) and 

was supposed to move to (0, 19). The speed was kept as 0.7. The fourth robot had a source (0, 19) and goal 

(24, 21). The speed was 0.8. The fifth and the last robot was had a source (11, 0), goal (0, 14), and speed 

0.2. The simulation was carried out and the final results were recorded. The movement of all the robots is 

shown in video 4. Figure 10 is the equivalent figure for the same simulation. The parameters are results are 

given in table 4.  

 

Table 4: Summary of situation and results for simulation with 5 robots 

 

S. No. Factor Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 

1. Source (2, 0) (24, 21) (24, 3) (0, 19) (11, 0) 

2. Goal (10, 24) (23, 0) (0, 19) (24, 21) (0, 14) 

3. Speed 0.6 0.8 0.7 0.8 0.2 

4. Reached Goal Yes Yes Yes Yes Yes 

5. Collision No No No No No 

6. Time 115 69 81 83 149 

7. Path Length 69 56 57 67 30 

 

It may again be verified that despite heavy complexity, the algorithm could figure out a collision-free 

motion strategy for the motion of the robots. It needs to be again noted that motion of a robot by a path 

completely blocks the path. For the entire duration that the robot occupies that path, no robot would be able 

to move in any direction without collision. Hence the number of alternate paths plays a major role in the 

system. Too many robots with less number of alternative path might mean no path may be possible for 

some or the other robot that reaches the goal without collision. Either the robot may not reach goal at all, or 

it may reach the goal with collision. In some cases the robot might have to take too many unnecessary (and 

in some cases redundant) paths before moving on a path that takes it to goal. Hence there is a limitation of 

the map to the maximum number of robots that can move in. For the same reasons we do not experiment 

with larger number of robots. Hence we see that multiple robots may be optimally moved into the map. 



  
Figure 10(a): Path traced by robot 1 for 

simulation with 5 robots 

Figure 10(b): Path traced by robot 2 for 

simulation with 5 robots 

  
Figure 10(c): Path traced by robot 3 for 

simulation with 5 robots 

Figure 10(d): Path traced by robot 4 for 

simulation with 5 robots 

 
Figure 10(e): Path traced by robot 4 for simulation with 5 robots 
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The next scenario we generate is a very simple one. Here we make two robots move in opposite directions, 

so as to make them reach a common goal. In this scenario we aim to test the working of the wait feature of 

the algorithm. It is evident that it is not possible to move the robots in a manner that collision can be 

avoided without any robot waiting. The map has one crossing and one of the robots needs to wait so that 

the motion may terminate without collision. The simulation for this case is given in video 5 and figure 11. 

It may be seen that one of the robot waits for the other. This again proves the usefulness of the wait feature 

of the algorithm.  

 

 
Figure 11: Path traced by two robots using wait for robot feature 

 

Apart from the designed algorithm and the wait feature, the other module we designed was the local 

optimizations using a lookup table. We stated that this lookup table was important for a robot to use the 

findings of the previous generations, as well as the other robots. This enables swift motion towards the 

optima. We executed the same scenario with 4 robots without the lookup table. We observed that the results 

were highly sub-optimal. Many times robots were struck at some loops, where they returned back at a point 

they had visited earlier. The results with the execution of the program without lookup table are given in 

table 4. The paths of the various robots may be seen in figure 12. Video 6 shows the motion of the robots. 

This shows that the module of lookup table was effective and played a vital role in making the algorithm.  

 

We further study the execution time of the algorithm for the increase in number of robots. Based on our 

understanding of the algorithm it may be easily seen that the execution time should increase with increasing 

number of robots. This is because of the fact that for every increase in robot, a Genetic Programming 

instance is created and   executed. Also the simulation plays a keen role in deciding the execution time. If 

the path to goal for all the robots is very simple, they would all attain their goals and the complete 

simulation would stop. On the other hand if there is a collision in the path of the robot, or it does not reach 

the goal till the end, there is a lot of computation that is performed. This is because for a very long time 

(until the genomic length is completely iterated) some or the other robot keeps wandering at the map. The 

increase in number of robots increases the possibility of collisions to a great extent and hence multiple 

paths need to be generated and tried. All this consumes a lot of time and execution time further increases. 

For the same reasons simulations having slower moving robots would take more computation time. We 

take the same map as discussed in the above discussions. We plot the execution time for the various 

numbers of robots. This is shown in figure 13. It can be easily seen that there is more than linear increase in 

computation time for increase in robots. This is because of the cooperation factor as discussed.  

 

We further extend the analysis to the stud y of the optimization of a single scenario. We study how the 

optimization time changes along with generations. Every generation has a different execution time. We 

may infer that the execution time depends upon the path of the robots. Every individual of both the genetic 

programming and genetic algorithm represents paths which need to be simulated multiple times. Longer 

paths would mean longer simulation time and hence the total time of execution of that generation would 

increase. As we move along with generations, paths start getting close to optimal solutions. The lengths of 

the paths reduce. More robots start to reach their goal, which means less wandering in the maps. Hence in 



general the execution time for higher generations is smaller than the execution time for the smaller 

generations. However the evolutionary operators may sometimes result in too fit or too unfit individuals. In 

case of the former, there is a sharp decrease in execution time, while the latter results in a sharp increase of 

the same. The sharp increase or decrease may be averaged out to some degree by the other individuals in 

the population pool. Figure 14 shows the graph for the execution time for various generations. The general 

trend has been plotted as a dashed trend line. The simulation of 4 robots was used.  

 

  
Figure 12(a): Path traced by robot 1 for 

simulation with 4 robots without memory based 

optimization 

Figure 12(b): Path traced by robot 2 for 

simulation with 4 robots without memory based 

optimization 

  
Figure 12(c): Path traced by robot 3 for 

simulation with 4 robots without memory based 

optimization 

Figure 12(d): Path traced by robot 4 for 

simulation with 4 robots without memory based 

optimization 

 
7 Conclusions 

 

In this paper we attempted to solve the problem of multi-robot motion planning. The modeling scenario had 

a maze-like map where the different robots were initially located at distinct places and were given their 

own goals that they were supposed to reach. We further assumed that each robot moves with its own speed. 

The algorithm framework made use of co-evolutionary genetic programming. The task of planning was 

performed at two levels. At the first level a linear representation of Genetic Programming was used. The 

individual in this case consisted of instructions for movement whenever a cross is encountered. There was a 
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Goal 

Source 

Source 
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Goal 

Source 



different instance for every robot. The other level consisted of a genetic algorithm instance. This algorithm 

selected the individuals from the genetic programming and tried to generate a combination such that the 

overall path of all the robots combined is optimal. An individual of this level had pointers pointing out to 

genetic programming instances. The resultant algorithm could solve the proposed problem, but there were a 

number of scenarios that it could not solve. For this we included the feature of wait for robot, where a robot 

may be asked to wait before some crossing till a robot passed the same. In this manner robots were capable 

of escaping from reasonably complex scenarios in a cooperative manner so as to reach their own goals. 

Many collision prone scenarios could hence be controlled, making collision free planning possible. We 

further saw that this feature resulted in generation of optimal paths. This algorithm also solved the purpose, 

but the resulting problem became highly complex. This necessitated the need of some local search strategy, 

which we included into the algorithm in form of a lookup table. Here, as the algorithm proceeds, optimal 

paths between any two crossings are monitored and stored. The path of any individual may hence be 

modified, and it may be made to follow by the pre-computed optimal path, rather than the path as per its 

genes. This feature hence made it possible to generate optimal paths reasonably early in highly complex 

scenarios. 

 

 
Figure 13: Execution time v/s number of robots 

 

 
Figure 14: Execution time v/s generations 

 

The algorithm was developed as a JAVA software, which could read BMP images as maps. The various 

parameters of the evolutionary algorithm as well as the problem specifications could be defined as well. A 

number of executions of the algorithm were carried out with different number of robots. In all scenarios we 

saw that the algorithm could figure out a collision free path for all robots from the source to the goal. The 

paths seemed optimal in length and travel time. The different runs were done with different positions of the 

robots. This ensures that the algorithm generates optimal results to different modeling scenarios. We further 

did experimentation of the algorithm with the same scenarios without the memory based optimization. It 

was seen that the algorithm could not perform well. The resultant paths were not optimal. Further the 

effectiveness of the wait for robot feature was experimented by a simple scenario, and the resultant path 



had a robot to wait for the other robot. The experimental results prove that the algorithm could effectively 

solve the proposed problem as per the mentioned modeling scenarios in a mix of easy to complex 

scenarios.  

 

In all the cases presented, it was a common observation that the speed of the various robots played a big 

role in deciding their paths. The different speeds meant different points of likely collision, for which some 

alternative strategy had to be built. Further it was observed that the later generations of the algorithm were 

a lot quicker. This was due to the optimized nature of the individuals at those times. The increase in the 

number of robots implied an increase in the complexity which increased the execution time.  

 

The presented approach however has some limitations as well. The biggest limitation is the optimization 

time of the algorithm. This algorithm may hence not be usable for many real time scenarios. It may also be 

possible that the real world scenario may have dynamic maps, which the present approach does not 

consider. The other limitation of the algorithm is that the modeling scenario gets very complicated for the 

addition of large number of robots. In lust to have an optimal overall path with a central planning 

technique, we put a restriction on the maximum possible number of robots that may be computed in real 

time. In real world it may be possible to move any number of robots in some complex mechanism. This 

approach may not be able to evolve the same. The addition of some heuristics to the planning algorithm 

may help to further increase its scalability to such scenarios. These heuristics may further help to get the 

execution time of the algorithm down. All these problems may be worked over into the future. Further an 

exhaustive testing of the algorithm with different models, maps, and robot locations and velocities may be 

done. This would clearly speak out the positive and negative aspects of the algorithm.  
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