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Abstract— Sampling based planning algorithms solve the 

problem of Robot Motion Planning by sampling a number of 

vertices to make a roadmap or a tree, which is then searched 

for a solution. The sampling strategy denotes the mechanism to 

generate samples used to construct the tree or the roadmap. In 

this paper new sampling strategies are proposed for the 

Probabilistic Roadmap technique that generate samples aiming 

at maximizing the sample visibility. The increased visibility 

makes it easier to construct edges with the neighboring samples 

and thus contribute to get a solution early. Based on this 

principle three new samplers are pro-posed. The first sampler 

generates samples inside corridors and promotes them exactly 

to the corridor centres. The second sampler uses a distance 

threshold bi-nary search to approximately place the samples in 

the corridor centre. The last sampler attempts to bias the 

sampling towards narrow corridors, while still placing the 

samples approximately at the corridor centres. The increased 

visibility pays off for the increased computation effort incurred 

therein. The approach is tested for narrow corridor scenarios 

and is experimentally found to surpass all state-of-the-art 

sampling techniques of Probabilistic Roadmap. 

I. INTRODUCTION 

Motion Planning [1] deals with computing a trajectory of 
the robot τ: [0,1]→Cfree from a given source state 
(τ(0)=SCfree) to a given goal state (τ(1)=GCfree). In order 
to carry out the search, the problem is seen at the 
configuration space (C), which is a collection of all possible 
robot configurations. Using the collision checking 
algorithms, the configuration space may be divided into free 
configuration space (Cfree) and obstacle configuration space 
(Cobs). Cfree, denotes the free configuration space, which is a 
space of configurations at which the robot is neither in 
collision with the obstacles, nor is it in the state of self-
collision. Cobs is the complement of Cfree over C 
(Cobs=C\Cfree), and denotes the configurations at which some 
collision occurs.  

One of the popular variants of the problem is the multi-
query methodology of solving the problem, wherein Cfree is 
first converted into a roadmap in an offline manner. The 
roadmap is then used to answer a number of queries 
consisting of source and goal pairs. Sampling based 
approaches are based on the working methodology of 
sampling out a number of configurations from the 
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continuous and high dimensional configuration space, which 
are used for the search. Probabilistic Roadmap (PRM) [2] 
technique accepts the sampled out configurations as vertices, 
while an attempt is made to connect every configuration to 
the neighboring configurations by using a local planner. 
Typically the nearest k vertices or the vertices at a radius of 
k are considered [3, 4]. The PRM* [5] algorithm adapts the 
same parameter for asymptotic optimality. If the local 
planner succeeds in connecting the two vertices, the vertices 
are connected by an edge as the local trajectory used by the 
local planner. A common technique is to use the straight line 
connection as the local planner.  

The performance of the sampling based motion planning 
techniques is largely reliant upon the quality of the sampler 
used. A popular sampling strategy is the uniform sampling 
strategy that samples uniformly in Cfree. The areas near the 
obstacles are more important which denote a mechanism of 
avoiding the obstacles, and thus the obstacle-based sampling 
strategy [6], aims to generate more samples at the obstacle 
boundaries. A typical way to do so is to first generate 
samples inside Cobs, and to then move them randomly (or 
towards a configuration in Cfree) till the motion produces a 
sample in Cfree, normally very close to the obstacle 
boundary. Similarly Gaussian sampling [7] is used to 
generate samples whose distance from the obstacle boundary 
is roughly given by a Gaussian distribution.  

Narrow corridors are marked by a small volume of Cfree 
sandwiched between Cobs. Since the volume of Cfree inside 
the narrow corridor is very small in proportion to the size of 
complete Cfree, the probability of generation of a sample 
inside the narrow corridor is small. A bridge test sampler [8] 
generates two samples in close vicinity inside Cobs, and a 
sample in-between. If the in-between sample is in Cfree, it is 
known to be inside narrow corridor, being in-between two 
samples in Cobs. A combination of uniform and bridge-test 
sampling [9] is also a good technique, wherein the uniform 
samples enable an enhanced connectivity of the samples to 
connect the roadmap. The maximum clearance sampler [10] 
solves the problem by attempting to generate samples of the 
maximum possible clearance. The typical way to do so is to 
keep generating samples for a few iterations, and to accept 
the one with the largest clearance. It can never solve the 
problems with narrow corridors, as the sampler would prefer 
a sample outside corridor with a larger clearance. The other 
problem is a naïve way of maximizing clearance by repeated 
sample generation, which is computationally heavy.  

Visibility Roadmap [11, 12] is another variant of the 
PRM which aims at producing a roadmap of the smallest 
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size, still producing a solution which is complete to handle 
all queries. The roadmap accepts new samples only if they 
are not under the visibility of any sample already in the 
roadmap, or samples which connect two disconnected 
roadmaps. The roadmap produces a minimally connected 
tree structure, which is used to answer queries. The problem 
with the approach is the optimality. The Sparse Roadmap 
Spanners for Asymptotically Near-Optimal Motion Planning 
(SPARS), and its extension SPARS2 [13] address the 
problem of optimality of Visibility Roadmaps, however still 
face the problem of connectivity in narrow corridor 
situations.  

The individual samplers have their own pros and cons, 
and therefore many researchers have proposed Hybrid 
Sampling [8, 14] techniques, wherein multiple samplers are 
used simultaneously. Heuristics or a learnable function can 
be used to select the selection of sampler based on the 
current context and performance indicator. In a related work 
Kala [15] used hybrid sampling techniques for initial sample 
generation followed by hybrid edge detection techniques for 
the construction of the roadmap. The roadmap construction 
was made biased towards discovery of all homotopic groups. 
Again the performance largely relies upon the quality of the 
individual samplers.  

In this paper the proposal is to produce samples which 
have as high visibility as possible. First a sample is 
generated and then the same sample is moved so as to 
maximize its visibility. In order to produce the sample, first 
two samples in Cobs are generated (q1

obs and q2
obs). Then a 

sample is generated in-between q1
obs and q2

obs, as centrally 
placed as possible between the two obstacles sampled by 
q1

obs and q2
obs (if q1

obs and q2
obs are from different obstacles 

in Cobs, separated by a region of Cfree). Based on the same 
idea, three samplers are proposed. The first sampler finds the 
boundaries of the obstacle sampled by q1

obs and the 
immediately first obstacle in the direction of q2

obs (if they 
represent different obstacles) and then places a new sample 
exactly in the middle of the corridor, ensuring that there is 
no obstacle anywhere in-between. So it is a search 
guaranteed to generate a sample in the middle of the 
corridor. The second sampler does the same thing, except for 
using binary search which is under some threshold to search 
for the middle of the corridor made by the two obstacles. It 
does not check for presence of another obstacle in between 
to speed up computation. The sampler is thus approximate in 
the sense of placement of sample and selection of adjacent 
obstacles. The third sampler does the same thing, however, 
generates the samples q1

obs and q2
obs by a Gaussian random 

distribution so as to have more samples in narrow corridors 
and lesser in open areas.  

II. ALGORITHM DESIGN 

A. Increased Visibility Sampling 

This sub-section presents the general principle of 
increased visibility sampling, based on which the other 
samplers are derived. Throughout the paper, maximization 
of visibility is caused by maximization of clearance. We 
leave it for the readers to verify that maximization of 
clearance results in increased visibility of the sample. Let 
qfreeCfree be a sample. The clearance is defined by (1). 

    oqdqCl free
obsCo

free ,min


  

Here Cl() is the clearance function, o is iterated over all 
obstacle boundaries and d() is the distance function. The aim 
is to maximize the clearance and therefore the sample qfree 
must be moved in Cfree in the direction of the derivative of 
the clearance function. Since the obstacle is not explicitly 
modelled in the configuration space, and especially 
considering that the configuration space is high dimensional, 
it is not possible to get the direction of traversal. Hence the 
clearance is approximated to be computed from a sampled 
set of directions. Let q1

obs, be a sample in Cobs. The clearance 
of qfree in a direction towards q1

obs is given by (2).  The 
sampled clearance is hence taken by sampling a few samples 
q1

obs, given by (3). Here and throughout the paper the 
addition operation is only an abuse of notation and refers to 
the generic interpolation equation which is possible in non-
Euclidean spaces. 
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Consider that the minimum clearance is recorded in a 
sampled direction q1

obs, which can hence be increased by 
moving in a direction opposite to q1

obs. Let the direction 
opposite to q1

obs be given by a sample q2
obs. q2

obs can be 
computed by the fact that qfree is in-between q1

obs and q2
obs, 

given by (4). 

   10,1,: 12   freeobsobsobs qqqCqq  

 

Out of all possible q that satisfy (4), any one value may 
be selected. Let us calculate the point around qfree that 
maximizes clearance in the line from q1

obs to q2
obs. Let ∂q1

 be 
the point at the boundary of the nearest obstacle towards 
q1

obs and similarly let ∂q2
 be the point at the boundary of the 

nearest obstacle towards q2
obs. Note that ∂q1 and q1 may not 

necessarily represent the same obstacle, due to the presence 
of an obstacle in-between the two in the same direction. The 
notations are illustrated in Fig. 1. The two boundary points 
are given by (5) and (6). 
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Figure 1.  Notations Used in Sampling 
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Here ε is a small number to force the existence of the two 

boundary samples in Cfree. Accordingly, the configuration 
with the best clearance on the line from q1

 to q2
 is given by 

(7). 

 21 5.05.0 qqq
free
mid   

If the sample qfree is promoted to 
free

midq , the clearance will 

increase to a value of   2/, 21 qqd  . Correspondingly the 

visibility will also be increased. By repeatedly sampling the 
direction vectors and moving the sample so as to maximize 
the clearance, the sample clearance will increase, till the 
sample is found at the configuration wherein the clearance is 
locally maximum, or visibility is locally maximized. 

B. Exact Mid-Corridor Sampler 

The process of maximizing clearance as indicated by the 
generic approach has problems which are addressed in the 
design of the first sampler. The first problem is that 
computing the opposite direction from equation (4) is not 
possible for all kinds of configuration space. The second 
problem is that the PRM cannot invest too much time in the 
generation of a single sample, as even the sparsest roadmap 
will have a large number of samples for high dimensional 
spaces. The third problem is that the samples are promoted 
to the configuration which is locally maximum in terms of 
clearance (or visibility), meaning multiple samples will 
converge to similar points, while roadmaps may require 
points at non-locally maximum clearance configurations as 
well for connectivity. As an example a point inside the 
narrow corridor cannot be promoted to a maximum 
clearance point outside the corridor.  

The problems are addressed by sampling q1
obs and q2

obs, 
instead of first sampling qfree and maximizing its clearance. 
Further, since the intention is not to ultimately promote the 
sample to the locally maximum clearance, the sampled 
direction of measuring and maximizing clearance is 
restricted to one pair only. Investing time in generating good 
samples is a good return in PRM type approach, since only a 
few number of good samples need to be ultimately 
generated. Investing less time and generating large number 
of samples is also a good technique, provided a subset of the 
samples are good enough for connectivity. By selecting only 
one pair of sampled direction tradeoffs between the 
computational expense and the quality of the sample 
(measured in terms of its clearance). By intuition, one 
direction mostly increases the clearance to a good enough 
value.  

However once a single pair of direction is selected, the 
exact mid-corridor sampler places the samples at the exact 
middle of the corridor, ensuring selection of two adjacent 
obstacles in the configuration space, with no obstacle in-
between. Since the configuration space is highly 
dimensional and large, it is possible that the obstacles 
represented by q1

obs and q2
obs will have multiple obstacles in 

between in the line from q1
obs to q2

obs. Once q1
obs and q2

obs 
are sampled, a traversal is made in the line from q1

obs to q2
obs. 

The first transition from Cobs to Cfree is on encountering ∂q1, 
while on further traversal from ∂q1 towards q2

obs another 
transition from Cfree to Cobs is on encountering q2. The two 

samples are given by (8) and (9). The new sample is given 
by (10), which is added in the roadmap. 
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C. Approximate Mid-Corridor Sampler 

The problem with the exact mid-corridor sampler is that 
it undertakes a long walk from q1

obs to ∂q2 in order to 
compute the exact centre of the corridor. The computational 
expense should normally not be a problem, since 
computational time of similar nature will anyways be 
additionally used to connect the sample to the neighboring 
samples. However if the configuration space is very large 
and if a very fine resolution of collision checking is used as 
per the preference of the algorithm, the samples q1

obs to ∂q2  
may be very far and traversing them may take a very long 
time. On the contrary the neighboring samplers for edge 
connectivity may be reasonably near, thus not 
computationally expensive to connect. 

Hence the exact mid-corridor sampler is extended to an 
approximate one that aims to compute the corridor centre by 
using some approximations. The sampler attempts to find a 
free sample qfree between q1

obs and q2
obs. Henceforth a rather 

strong assumption is made, that is there is neither an obstacle 
between qfree and q1

obs (apart from the obstacle represented 
by q1

obs), nor is there any obstacle between qfree and q2
obs 

(apart from the obstacle represented by q2
obs). The 

assumption will obviously not hold a good number of times. 
If the assumption holds, the algorithm nearly finds the 
corridor centre. However, if the assumption does not hold, 
the sampler may either place the new sample anywhere in 
the corridor centre (depending upon the unknown location of 
the obstacle), or may instead not generate any sample. The 
wrongly placed samples are also of general value. Hence the 
time saved, even if that results in insertion of some samples 
not in the middle of the corridor, can be of value, if the 
saved time span can result in insertion of some good 
samples. Correspondingly, for some configuration spaces, 
wherein the assumption does not hold well, the time saved 
may as well not be of value. 

In this technique first the samples q1
obs and q2

obs in Cobs 
are generated. First a queue based search is used to search 
for any sample qfree in Cfree that lies in between q1

obs and q2
obs. 

The requirement is given by (11). 
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First the mid-point of q1
obs and q2

obs is checked. If the 
same is collision prone, then the mid-point in-between q1

obs 
and q2

obs and the earlier computed mid-point is checked. In 
this manner, at every level the mid-points of the previously 
checked points are checked for the possibility of a collision. 
The first computed collision-free point is returned. The 
search practically performs better than a linear search due to 
the size of the obstacle. 



  

Now the algorithm assumes that there is no obstacle 
between q1

obs and qfree and uses a binary search to compute 
the sample ∂q1. Similarly the algorithm assumes no obstacle 
between q2

obs and qfree and uses a binary search to compute 
the sample ∂q2. Increasing visibility over a certain amount 
may not really be worth the computational time. Similarly 
the mid-placement is more important for narrow corridor 
like hard scenarios, rather than scenarios with wide open 
spaces. The binary search is hence distance limited, and if 
the estimated distance between the valid samples increases 
more than a threshold (η), no further attempt is made to 
compute the precise middle of the corridor. The pseudo-code 
is given by Algorithm 1. Here Δ is the resolution of collision 
checking.  

Algorithm 1: Approximate Mid-Corridor Sampler 
Sample q1obs and q2obs in Cobs 

Search for qfree between q1obs and q2obs 

∂q1← qfree, ∂q2 ← qfree 

if qfree does not exist, return null 
while true 
  if d(q1obs, ∂q1)≥Δ 
    qmid ← 0.5 q1obs + 0.5 ∂q1 

    if  qmid Cfree, ∂q1← qmid 
    else q1obs ← qmid 

  if d(q2obs, ∂q2) ≥Δ 
    qmid ← 0.5 q2obs + 0.5 ∂q2 
    if  qmid Cfree, ∂q2← qmid 
    else q2obs ← qmid 

  if d(q1obs, ∂q1)<Δ and d(q2obs, ∂q2)<Δ, break 
  if d(∂q1, ∂q2)>η, break 
qmid← 0.5 ∂q1 + 0.5 ∂q2 

if qmidCfree, return qmid 
else return null 

 

D. Narrowness Biased Mid-Corridor Sampler 

The approach, unlike the uniform sampling technique, 
samples the obstacles and is hence naturally in a position to 
sample out the narrow corridors as they are discovered. 
However since the two obstacle samples are randomly 
chosen, it is possible that a large number of samples are 
generated in wide open spaces and a smaller number of 
samples are generated in the narrow corridors. Generation of 
samples inside the narrow corridor is not the only challenge, 
to redundantly connect them with the rest of the roadmap is 
a harder challenge. This requires additional samples inside 
the narrow corridor. 

Hence a strategy proposed is to have larger number of 
samples inside the narrow corridor and a smaller number of 
samples in the wide open areas. In order for a sample to be 
in a narrow corridor a valid sample qfree, must exist in-
between two invalid samples q1

obs and q2
obs in Cobs. The 

maximum width of the corridor is given by d(q1
obs, q2

obs). 
The actual width may be much smaller since q1

obs and q2
obs 

may not be boundary points and the smallest width of the 
pair of obstacle may not be in the direction of the line from 
q1

obs to q2
obs.  

This sampler is similar to the approximate mid-corridor 
sampler with the only difference that the initial samples 
q1obs and q2obs are chosen such that the distance between 

them is taken from a Gaussian Distribution, that is, 
q1

obs~U(Cobs), q2
obs~N(q1

obs,σ): q2
obsCobs. Here σ is the 

standard deviation, which is an algorithm parameter. U() is 
the uniform distribution function, while N() is the normal 
distribution function. The algorithm samples the width of the 
corridor. As per the generic working of the Gaussian 
distribution, the smaller width corridors get sampled more 
while the larger width corridors get sampled less. This 
creates a biased distribution of samples in favor of the 
samples inside the narrow corridor. The additional samples 
in the narrow corridor enable better visibility of the narrow 
corridor and a better connectivity with the rest of the 
roadmap. 

III. RESULTS 

The proposed samplers were developed in the Open 
Motion Planning Library (OMPL) [16]. Two scenarios are 
used for testing, the Alpha-1.5 problem and the Twistycool 
problem. Both the scenarios have complex narrow corridor 
in the configuration space. The problems are given in Fig. 2. 
All experiments are done on a standalone system with 4 GB 
RAM and Intel i7 2.0 GHz 2.0 GHz processor.  

Figure 2.   (a) Alpha-1.5 Problem (b) Twistycool Problem 

  

The first task is parameter optimization. The exact 
sampler uses no parameter. The approximate sampler has the 
parameter η which is used to threshold the binary search in 
wide open corridors. Corridors larger than η are wide 
enough and the sample is directly placed in the middle 
without necessitating a search. Since the binary search is 
much faster than the time invested in collision checking, 
spending a few extra iterations has small effect in terms of 
computational time. So the parameter has very little effect 
on the algorithm performance. The results confirm the same 
and are shown in Fig. 3(a). The parameter value is taken as a 
ratio of the maximum permissible distance. Since the 
scenarios are difficult, the only metric used is the percentage 
of times a solution is found. The testing is done for a class of 
very difficult problems, for which finding a single feasible 
solution is very difficult and not for problems where feasible 
solutions are easily available. For experiments, no 
appreciable difference in solution lengths between methods 
was observed and hence the metric. The results reported are 
an average of 400 runs. Each run is restricted to 20 seconds. 

Figure 3.  Parameter Tuning for (a) η (b) σ 



  

  

Similarly the narrowness biased sampler uses a Gaussian 
distribution for sample generation, which has a parameter as 
the standard deviation (σ). Using the best parameter value of 
η, further experiments are done to select the best value of the 
parameter σ under the same settings. The results are shown 
in Fig. 3(b). Again the differences are not very large since 
the basic sampling technique itself generates samples inside 
narrow corridors due to promotion of samples from both 
ends. 

The algorithm is compared against all popular sampling 
based multi-query planners. These include the uniform 
sampling PRM, obstacle based PRM, bridge-test sampling 
based PRM, Gaussian sampling PRM, maximum clearance 
sampling based PRM, SPARS and SPARS2. As it can be 
clearly seen from Fig. 4(a) that the proposed sampler 
performed the best as compared to all approaches. Moreover 
the performance was significantly better than all other 
approaches. Amongst the three samplers, the exact mid-
corridor and approximate mid-corridor placement samplers 
had the same performance. The performance of the 
narrowness biased sampler was a percent less.  
To test the algorithms, another scenario, Twistycool was 
used. The results reported are an average of 400 runs. Each 
run is restricted to 20 seconds. The results are shown in Fig. 
4(b). Again the proposed samplers performed significantly 
better than all the other samplers. The exact mid-corridor 
sampler and approximate mid-corridor sampler had the same 
best performance, while the narrowness biased sampler had 
a percent less performance. 

Figure 4.  Comparative Analysis on (a) Alpha-1.5 Problem (b) Twistycool 

Problem for 20 secs 

  

Figure 5.  Comparative Analysis on the (a) Alpha-1.5 Problem ( (b) 

Twistycool Problem for 10 secs 

  

Figure 6.  Comparative Analysis on the (a) Alpha-1.5 Problem ( (b) 

Twistycool Problem for 5 secs. 

 
 

The experiments were repeated to better study the 
performance in lower time limits and the results are shown 
in Fig. 5 for a time limit of 10 seconds and Fig. 6 for a time 
limit of 5 seconds. The results repeat exactly the same trends 
with respect to the difference with the other samplers, while 
the three proposed samplers had a similar performance. 

The results are obviously surprisingly good, exceeding 
all the available multi-query planners available in OMPL by 
a significantly large margin. The goodness of the results is 
proved on prolonged number of runs and for different 
scenarios. This is considering the fact that the proposed 
samplers are extremely simple in nature and can be coded in 
any programming platform in just a very few lines of code. 
The interestingness of the results provokes further research 
in the same area. 

IV. DISCUSSIONS 

The major criterion of assessment is the early 
completeness of the algorithm; that is the algorithm should 
be able to compute a path as soon as possible. For the 
purpose of discussions, let us assume that the algorithm 
checks connections between all pairs of vertices rather than 
the nearest k vertices in the roadmap. Let V(q) be the 
visibility of Cfree from q, wherein any point in V(q) can be 
directly connected to q. Any roadmap based planning 
algorithm under the settings is complete if (12). 

   free
Riq i CqV   

Here R is the set of vertices in the roadmap. Let us start 
with a PRM approach. The aim is to continuously sample 
out and grow the graph based on some sampling strategy (S) 
and hence the strategy is given by repeated calls to 
qi~S(Cfree), with a visibility V(qi). Let Δ:Cfree→Cfree be the 
algorithm to promote the sample from qi to the increased 
visibility sample Δ(qi), that is Volume(V(Δ(qi))) > 
Volume(V(qi)). The excess contribution to the criterion (11) 
of roadmap is given by Volume(V(Δ(qi)) - V(qi)), with a loss 
of Volume(V(qi) - V(Δ(qi))) in visibility metrics. Since, 
Volume(V(Δ(qi))) > Volume(V(qi)) there is definitely an 
added advantage. Another assumption made here is that 
increased visibility is not in the region of Cfree which is 
already visible by some other sample qj. That is, more 
correctly the improvement is given by (13) and the loss by 
(14). 

         ijRjq jii qVqVqVVolumeV  ,1  

         ijRjq jii qVqVqVVolumeV  ,2  

In the design of the sampler it was stated how the 
sampler avoids getting too many samples in the same place 
by under-sampling of directions, and therefore the bias 
towards over-sampling in similar areas by the new scheme 
considering large and complex space is minimal. Hence the 



  

improvements are more than the losses, and the sampler is 
expected to perform well.   

However the improvement in performance came with an 
additional cost of T(Δ(qi)), where T() is the computation 
time of the algorithm, which could have been used to inject 
more useful examples that also aided in increasing visibility. 
On insertion of the sample, the collision checking algorithm 
works. Since the metric is completeness, the sample qi will 
be connected to at least one sample qj by the collision 
checking algorithm which will return a feasible connection, 
in which case taking time proportional to d(qi,qj). The mid-
placement algorithm in the worst case performs an exact 
search and takes a computation time of d(q1

obs,q2
obs). The 

complexity of the two algorithms is the same, while the 
constant is larger for the algorithm Δ since q1

obs and q2
obs are 

large distance apart. The approximate algorithm uses a 
complexity of log(d(q1

obs,q2
obs)), which is smaller than the 

one used by the collision checking algorithm, while the 
Gaussian sampler uses the same complexity with a smaller 
value of d(q1

obs,q2
obs) which came from a Gaussian 

distribution. The excess computation time is hence an issue 
primarily with the exact sampler, wherein the excess 
computation is clearly small. 

The little added computational time is not very limiting, 
since the number of samples due to increased visibility 
sampling will be smaller and hence the general complexity 
of the PRM approach O(|R| log |R|) will lead to 
computational benefit. A little cheat in the discussions is that 
in the working of the algorithm qi was not promoted to Δ(qi), 
rather a qi maximizing visibility was directly computed. This 
negates the possibility to use existing customized samplers 
for further improvement, which is not a loss since nearly all 
samplers are made up from the basic samplers which can all 
be easily formulated in the generic framework used in the 
paper. Overall, the proposed approach is able to give very 
good results for very hard problems involving narrow 
corridors. This is proven experimentally, has a strong 
intuitive background and is further formally assessed in this 
section. For comparisons on an experimental level, all 
available samplers in OMPL were tried. From a theoretical 
basis more samplers were critiqued.  

The current work using the approach involves 
hybridization. As the basic scheme the simplest method of 
using fixed contributions of different samplers has already 
been tried. The basic samplers have a significantly increased 
performance as a result of hybridization that still does not 
match the performance of the proposed sampler. However, 
when the proposed sampler is used, the performance does 
not significantly improve with hybridization. This adds on to 
the belief of the effectiveness of the proposed algorithm. 
There is less motivation that adaptive hybrids will improve 
performance, but that needs to be tested. The purpose behind 
the approach was to solve the pick and place problems 
involving very complex and narrow scenarios. The making 
of complex data sets and associated motion planning queries 
is left for the future. In the future aim is also to test the 
sampler on single query motion planning algorithm. Also, 
optimality is a factor that needs to be considered in the 
future version of the algorithm. The sampler is designed and 
tested on the scenario of narrow corridors on high 

dimensional search spaces. The overall aim of motion 
planning is to create a single algorithm for all possible 
simple to complex scenarios. The adaptation of the sampler 
for other scenarios as well needs to be studied.   

V. CONCLUSIONS 

The paper aimed at creation of a new sampling 
methodology that very quickly increases the visibility of the 
sample and thus helps in its connection to the rest of the 
roadmap. The sampled was aimed at solving complex and 
narrow-corridor-like scenarios in motion planning. The 
sampler worked by generation a free sample amidst two 
sampled obstacle samples, and thereafter moving the free 
sample to the middle of the corridor so found. An 
approximate version, exact version and a Gaussian sample 
version of the algorithm were proposed. 

The samplers are very simple with a few lines of code 
only and surprisingly performed exceedingly well. They 
easily surpassed all multi-query motion planning algorithms 
available at the OMPL. This presents a fundamentally new 
look into sampling. Even though efforts on the use of 
visibility and clearance existed in the literature, theoretically 
and experimentally the proposed sampler over-performed 
those methods. This is due to the effective use of heuristics 
to get a sample quickly with very high visibility. 
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