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Abstract 

The architecture and working of the Artificial Neural Networks are an inspiration from the human brain. The brain 

due to its highly parallel nature and immense computational powers still remains the motivation for researchers. A 

single system-single processor approach is highly unlikely way to model a neural network for large computational 

needs. Many approaches have been proposed that adopt a parallel implementation of ANNs. These methods do not 

consider the difference in processing powers of the constituting units and hence workload distribution among the 

nodes is not optimal. Human Brain not always has equal processing power among the neurons. A person having 

disability in some part of brain may be able to perform every task with reduced capabilities. Disabilities weaken the 

processing of some parts. This inspires us to make a self-adaptive system of ANN that would optimally distribute 

computation among the nodes. The self-adaptive nature of the algorithm makes it possible for the algorithm to taper 

dynamic changes in node performance. We used data, node and layer partitioning in a hierarchical manner in order 

to evolve the most optimal architecture comprising of the best features of these partitioning techniques. The adaptive 

hierarchical architecture enables performance optimization in whatever condition and problem the algorithm is 

used. The system was implemented and tested on 20 systems working in parallel. Besides, the computational 

speedup, the algorithm was able to monitor changes in performance and adapt accordingly.  
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1 Introduction 

Artificial Neural Networks have been applied in numerous domains and problems such as speech recognition, face 

recognition, character recognition, financial analysis, bioinformatics, credit analysis etc. [16, 2, 34, 47]. Their 

application over the years has resulted in an increase in the volume and dimensionality of data that require a lot of 

time to train [30]. The neural networks are inspired from the human brain. The human brain [31] is made up of a 

number of processing units or neurons working in parallel.  

 

With the rise of multi-processing and grid-computing, more and more systems are now being made based on parallel 

algorithms. Various models of parallel implementation of Back Propagation Algorithm have thus been proposed. 

The parallelism introduced in neural networks improves its performance especially during the training stage [8, 15, 

17, 18, 21]. Parallel neural networks implement the neural networks in parallel by various kinds of partitioning of 

data set, nodes or layers called as data set partitioning, node partitioning and layer partitioning respectively [3, 5, 6, 

42, 44, 48].  

 

In this paper we introduce the concept of hierarchical partitioning. Every partitioning technique gives an optimal 

performance under some conditions. Here we apply all partitioning techniques one after the other in a hierarchical 

manner. First data set partitioning is applied to distribute test cases among node sets. Then layer partitioning is 

applied in half of the node sets and node partitioning in the other half. The actual distribution of computation is done 
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in an adaptive manner at runtime. This makes it possible for the most optimal architecture of the system to evolve. 

This further ensures an optimal distribution of computation among nodes such that no node sits idle for long [25, 34, 

36, 47]. This is motivated from the adaptive learning and behavior of brain that can adapt to the internal or external 

changes [20, 45]. We also introduce the concept of irregular processing powers of the constituent nodes.  

 

This paper is organized as follows. In section 2 we would discuss motivation and the present works. In section 3 we 

discuss the 3 basic types of partitioning i.e. data set partitioning, layer partitioning and node partitioning available in 

literature. In section 4 we present the hierarchical nature of the algorithm by introducing hierarchical partitioning. 

Section 5 talks about the self-adaptive approach of the algorithm. The general algorithm is discussed in section 6. In 

section 7 we give the results. Conclusion remarks are given in section 8. 

 

2 Motivation  

Use of ANNs with BPA is very common in numerous fields [16, 2, 34, 47]. Parallel algorithms due to their 

computational speedup are another active area of research [14]. With the massive growth in data, the need of parallel 

implementation of ANN is natural [6, 8, 15, 17, 21]. Node, data, layer, hybrid are commonly used techniques [3, 5, 

42, 44]. These partitioning give good speedups and performance benefits as well. Newer areas include the 

application of Genetic Algorithms [48], hardware support exploitation [39]. BPA has been implemented in various 

situations [1, 14, 43]. Besides BPA, parallel implementation of Self Organizing Maps (SOMs) [13, 33, 46], 

Perceptrons, etc. [12] is being done. The need of autonomous and self-adaptive system is on a constant increase due 

to the various benefits of these systems [25, 34, 36, 47].  

 

Hierarchal approach based partitioning has not yet been applied to the ANNs. Network of Networks (NONs) have 

been employed to break down the network into modular networks [4, 11, 40]. Also we introduce here the novel 

concept of self adaptive nature. The motivation for the same comes from the capabilities of the human brain. Here 

we briefly discuss the human brain as a motivator of the proposed system.  

 

2.1 Motivations from the Human Brain  

In this section we study the motivations that we derive from the human brain for implementation in the proposed 

algorithm. The first and foremost motivation is the architecture itself. Human brain consists of a large number of 

biological neurons connected by nerve fiber [31]. Information is processed and passed between these neurons in 

form of electrical signals. For any biological neuron, the dendrites act as receptors of signal. The cell body does the 

task of processing. The axon carries the outgoing electrical signals [19]. The different neurons work in parallel that 

gives brain the immense computational power. While the single processor systems correctly implement the brain 

model at the computational level, these do not exploit the parallelism of the brain functioning. The same has been 

implemented in the proposed algorithm with sockets playing the role of dendrites and axons; data playing the role of 

electrical signals; physical wires the role of nerve fiber and processing elements the role of cell body. 

 

The second motivation that comes from the human brain is learning. The memory of the brain is in the form of the 

connections between neurons and their weights that gives human the intelligence. The learning in brain results in 

breaking and forming of a large number of connections every second [7]. The BPA is itself an inspiration for 

implementation of supervised learning of brain. 

 

The third motivation derived from the human brain is evolution. The evolution of life is a perfect example which 

shows how the various species kept developing and adapting themselves to the surroundings. The classical example 

of artificial adaptation includes Genetic Algorithms where higher generations adapt themselves better to the 

situations or problem. As a result the higher generations are more optimized to solve the problem [24]. The human 

brain also starts as a premature entity of the body in a small child and keeps evolving with time to attain higher 

complexities and intelligence as the child develops into an adult. The algorithm that we develop would optimize the 

workload distribution between the various processing elements. It starts with an equitable workload distribution and 

then keeps modifying the distribution to optimize learning time.  

 

The fourth motivation from the human brain is adaptation to changing situations. The human brain keeps learning 

continuously in an adaptive manner [20, 45]. Every day we are exposed to some new people, we see many new 

developments in the society and have good and bad experiences. We are easily able to remember each one of them 

for varying durations without long learning cycles or efforts. It would be very easy to memorize a number we just 

saw but very difficult to keep it in memory for 10 years. All this is because of the capability of the brain to adapt 



itself in a continuous manner as the situation demands. This is also referred by the term adaptive learning in artificial 

systems [23, 37, 35]. The other related concepts include plasticity [22, 32] and instantaneous or short term memory 

[26, 27, 28, 29]. Although we do not implement adaptive learning here, we introduce the same concepts at the 

performance level. Here we empower the algorithm with adaptive capability to adjust their workload between the 

various processing elements to have the most optimal workload distribution at any time as per changing 

environment.  

 

It is well known that different parts of the brain are adapted for different functions [10]. This gives us enough 

reasons to advocate the computational disparity of the various biological neurons of the brain. This gives us our fifth 

motivation. The algorithm that we develop accounts for the computational disparity of the various processing 

elements. 

 

Another related concept that forms our last motivation from the human brain is flexibility. The various biological 

neurons in the human brain are subjected to change in performance. This may be a sudden change or a gradual 

change. While the sudden change may happen due to physical illness in brain, the gradual ones may be seen with the 

reduction in capabilities with age. In any case, the brain continues to perform. This is the flexibility factor of the 

brain where different parts are able to adjust themselves to continue performing even when the other part fails [9]. 

The same has been implemented in this algorithm. The irregular nodal processing of the brain is yet to be 

experimented and studied. It may be guessed that that brain has some adaptive mechanism so that the work of low 

efficiency or failed nodes can be given to the high efficiency or working nodes. We implement this mechanism of 

load balancing in this algorithm.  

 

In this work we have proposed a server-client relationship where the server controls the nodes to implement the 

adaptive features of the algorithm. We know that the brain is not run by such mechanism of server-client 

relationship. It is rather a system comprising of independent parallel processing neurons [31]. The brain is believed 

to be a huge network of networks (NoNs) [4, 11]. If we break down the whole brain and come to the basic network, 

we may find some similar system being implemented there. These may be done using a peer-to-peer architecture [4]. 

The proposed algorithm is possible using the peer-to-peer architecture as well which we do not implement in the 

present work. The exact mechanism of such a system in brain is still a big mystery. 

 

3 Partitioning  

In this section we discuss the three basic types of partitioning available in literature for the parallel implementation 

of ANN. These form the basis of our proposed algorithms of hierarchical partitioning and self adaptive 

implementation. The BPA adjusts the weights and biases to optimize the ANN. In this paper we refer to weights and 

bias by weights only. 

 

3.1. Dataset Partitioning 

This training dataset usually consists of huge amount of data that is trained in a batch processing mechanism in 

BPA. This type of partitioning divides the dataset into a number of smaller datasets. Each processing element (PE) is 

given a part which has its own copy of the ANN. The final weights of all PEs are noted. The mean of these weights 

is taken as the final weight of the ANN. This is given in equation (1). 

 

          (1) 

 

Here Wij
k
 is any weight from any node i to any neural node j of the ANN in layer k. 

N is the number of partitions 

 

This type of partitioning is especially very useful in very large data sets. As all the PEs are independent of each 

other, only the final weights after training are communicated between PEs. This updates the weights of all the PEs 

and they are ready for another set of iterations. The division of data and then the exchange of weights between the 

PEs is shown in figure 1. 

 

The communication among PEs needs to be kept at a minimal in order to minimize the communication overheads. 

For the same reasons peer-to-peer connections among the PEs have been used, where every node is connected to the 

next node to form a circle. Each PE communicates its weight set to the next PE. It also communicates the weight 



sets of previous PEs that it receives to the PE next in the circle. It may be seen that this cycle of communication 

needs to be carried out till n-1 cycles before all PEs know all weights calculated by all N PEs. They then update their 

weights using equation (1). This communication is shown in figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Data Set Partitioning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The communication in data set partitioning 
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3.2 Layer Partitioning 

This type of partitioning works on layers. The ANN consists of many layers one after the other. Each layer can work 

on a data item only when the preceding layer has finished working on it and has supplied its results. The calculations 

are done by this layer and the results are communicated to the next layer. This happens in both feed forward as well 

as feedback stages.  

 

The different layers work on different data items in a pipelined manner. Once the first layer completes its 

calculations for the first data item, it communicates it to the second layer. Now the first layer works on the second 

data item while the second layer works on the first. A similar working is displayed in the feedback stage. The 

pipelined architecture facilitates the different layers to work on different data at the same time. The weights are 

updated at the backward propagation stage. The old weights are temporarily stored during the period the forward 

and backward stage carry their computation. The concept is shown in figure 3.  

 

 

 

 

 

 

 

 

Figure 3: The working of layer partitioning 

 

The general architecture of the layer partitioning is given in figure 4. The computations are transferred from a 

backward layer to a forward layer (in feed forward stage) and a forward layer to a backward layer (in feedback 

stage). Hence every PE is connected to the next PE and the previous PE. The communication is shown in figure 3. 

The mathematical model for this partitioning is given in equation (2) and (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The layer breakup of a neural network 

 

For forward phase we have 

           (2) 
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W
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The output of any layer becomes the input for next layer. Similarly in the backward phase we propagate the array of 

desired valued backward. The error E that is propagated from one layer to previous layer is denoted by equation (3). 

 

             (3) 

 

3.3 Node Partitioning 

This type of partitioning partitions the various nodes horizontally. Each partition is handled by a separate PE. The 

partitioned ANN consists of nodes from all layers. In this the computation is slightly more complex. The 

computation has to precede layer-by-layer. Hence at the start, all nodes at first layer of various PEs may start 

functioning. Once this is done, then only the nodes at second layer will get a chance to operate. This way the 

processing propagates simultaneously among all PEs, from one layer element to the other. The computation in the 

backward phase also follows the same principles in the reverse direction. The general structure of this computation 

is given in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The working of node partitioning 

 

The general structure of this partitioning is given in figure 6. The weights are usually stored reputedly to save 

computation time. Due to the number of connections, the total communication time is usually large. The 

communication of data is from one PE to all the PEs. The communication is shown in figure 7. The mathematical 

model of this type of partitioning is given in equation (4) and (5). 
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Figure 6: The structure of node partitioning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Communication in node partitioning 

 

 

For forward phase we have 
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Similarly in the backward phase we propagate the array of desired valued backward. The error E that is propagated 

from one layer to previous layer is denoted by equation (5). 

 

           (5) 

 

The equation (4) and (5) show the input vector (I) and the error vector (E) respectively divided into N parts that are 

needed for the functioning of any node in a PE. The PE gets N-1 inputs and errors from other PEs and 1 from its 

own from a node at the previous or forward layer. Here we have assumed that any PE carries n neurons in a single 

layer.  

 

4 Hierarchal Partitioning  

This is the partitioning that we propose in this paper. The basic aim is to exploit the best features of the various 

techniques. We first apply data partitioning to divide data among the different PE sets. Later all the PE sets further 

divide the computation using either node partitioning or layer partitioning. This would enable generation of unique 

architecture of the network that would be optimal. The hierarchal partitioning helps in partitioning the ANN to the 

maximum possible extent. This helps us in attaining higher level of parallelism and better performance. 

 

The data set partitioning divides the whole dataset into smaller data sets and assigns each data set to a PE set. We 

then use either node or layer partitioning in the PEs within the PE set. A general way is to partition half PE sets 

using node partitioning and the other half using layer partitioning. In layer partitioning each PE represents a layer 

and the number of such elements is the number of layers. Similarly, in node partitioning each PE represents a set of 

nodes from all layers.  

 

At the time of training, the data set is first divided and distributed among all the PE sets. Each set behaves 

independently till the interchange of weights takes place to calculate the ANN architecture. At this time, the circular 

communication starts and the weights are communicated as discussed in node partitioning. 



 

Internally, each PE set partitions its task using node or layer partitioning. This communication does not affect the 

communications for the exchange of weights in data set partitioning. The result is computed internally by the 

applied partitioning technique by the PE set. The final weight vector is calculated and then communicated in the data 

set partition. 

 

The general structure of this system is given in figure 8. It may be noted here that there is no physical system that 

acts as the data set partition PE. Rather the extra functionalities of the data set partition are added to the first PE of 

the node/layer partition. It performs both the tasks of data set partitioning and node/layer partitioning. We use two 

different sockets for both these communications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The general structure of hierarchical partitioning 

 

 

5 Self-Adaptive Approach 

This is another concept that we introduce in this paper. As discussed above, all the PEs of the network may not have 

equal processing powers. Since we are considering that there are a large number of workstations available for 

partitioning to happen, it is very less likely that they be of the same processing powers. The processing power or 

configuration may vary drastically. Also if the processing powers are same, it is possible that there may be a 

temporary load on some PE due to which the performance may be temporarily reduced. Hence performance of a PE 

is never constant. It keeps changing.  

 

The general algorithms would not give optimal performance in such cases. The self-adaptive nature of the system 

empowers it to adapt itself towards changing conditions. The adaptation enables performance optimization. The 
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adaptation is carried by varying the computational load on the PEs. The high performance workstations are given 

higher computation as compared to the lower performing PEs. The performance is seen in relative terms. It is the 

performance of a PE compared to other PEs. 

 

For implementation of this concept, we setup a server and client architecture. The server here does the job of load 

balancing. Load balancing is done on the data set partitioning PEs. The server is responsible for the performance 

evaluation of all the nodes and then division of computation among them. 

 

A major parameter here is the frequency in which the server monitors and re-allocates the load. If the frequency is 

too less, it is possible that the system may recover completely from the low performance peaks and the same may go 

unnoticed. If the frequency is very high, it may result in a huge loss of time in communication. This communication 

may increase overheads and the total time may shoot up. Hence operating frequency needs to be decided cautiously. 

 

The communication required for this system is carried out in peer-to-peer mode. Each PE reports its performance to 

the next PE. This goes for n-1 cycles after which all nodes know about the performance of all nodes. While 

implementing this communication takes place along with the transfer of weights between PEs in data partitioning. 

Both the information on weights and performance go simultaneously. The performance is communicated by the first 

node to the server at the desired frequency. The server studies the performances and then redistributes the 

computation among all PEs. 

 

Every node is provided with a number that denotes the number of data cases that it would be given. If this number is 

changed, the next time the PE would accept those many numbers of data cases. The circulation of test cases also 

takes place in the circular queue. The test cases are passed from one PE to another. Each PE picks up the mentioned 

number of test cases and passes on the others to the next PE. The last PE gets the left number of data cases (T-∑ni) 

where T is the total data cases. 

 

The distribution of work load is done by the ratio of the performances reported by the various PEs. The performance 

here is the actual time taken by the PE in execution, neglecting the time it was waiting for the response from the 

other PE. The number of data cases ni
new

 to be given to any node i may be calculated by equation (6). 

 

           (6) 

 

Here ni
old

 = Number of data cases previously given to node i 

ni
new

 = Number of data cases to be given to node i 

N = Total number of PEs 

pi = Performance of node i 

 

Here pi is calculated as the difference between the time taken by serial execution of the algorithm and processing 

times of that PE. This is given in equation (7). 

 

           (7) 

 

Here ti = Processing time of node i 

S = time taken by serial execution of the algorithm 

 

The general architecture of this system is shown in figure 9. 

 

6 Algorithm 

In the previous section, we discussed all the individual parts of the algorithm. Now we put it all together and present 

the big picture of the algorithm. The whole algorithm operates in two stages. The first stage is the initialization stage 

where the entire architecture is built. This stage makes necessary connections between the various PEs and assigns 

roles to the them as per the intentions of the user. This stage lays the basis for the second stage or the working stage. 

In this stage each and every step of the BPA is put into practice. We discuss these two stages one by one. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The server/client self adaptive model 

 

6.1 Initialization Stage 

Before we even start the training of the ANN, we need to connect the various PEs to each other such that the 

required transfer of information can take place. This is done using network sockets and socket programming. The 

basic structure of the nodes and their connections is shown in figure 10. We study the architecture in three levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The connections in the algorithm 
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At the first level the whole architecture of the algorithm is based on a single server-client relationship. The server is 

responsible for the self-adaptive load balancing approach. For this the server needs a framework to connect to the 

clients for the passing of information from the PEs and to the PEs to implement load balancing.  

 

At the second level, there is a ring of data set partitioning. Here the various PEs are connected in a circular manner 

to each other. This enables the various data set partition PEs to pass data set, architecture, initialization, training 

results and performance information to all the other PEs in a circular distribution mechanism. This ring is connected 

to the server as the first level. 

 

At the third level the connections are maintained for node or layer partitioning. Here every data set partition is 

further divided into either layer partitions or node partitions. The layer partitions have a number of nodes connected 

in series one after the other. This depends on the number of layers in the network and the number of PEs available. 

The communication of every node is to the forward layer and backward layer. In node partitioning the ANN is 

divided into various parts in horizontal alignment. These are worked upon by individual PE. The connections in this 

partitioning are more than in any other partitioning. Any PE needs to be connected to all the other PEs. 

 

When the algorithm starts, the server first sends the initialization instructions using the level 1 connection. This is 

then communicated between the data set PEs using level 2 connections. Then each data set connection transmits the 

needed information to all the node or layer PEs using level 3 connections. In this manner all the PEs get the 

initialization information. The initialization instruction contains two types of information. The first part is the 

partitioning architecture. These are the roles and duties of every PE participating in the algorithm. It helps the PE to 

make the needed connections with the other PEs. The second information carried is the ANN architecture. It helps in 

the initialization of the various PEs. The various PEs allocate memory needed for the algorithm to run. Now the 

various neurons and corresponding weights have symbolic existence and are initialized by dummy values. 

 

All these connections are established as the first step as soon as the program starts. These connections are 

maintained throughout the program run. All the communications are carried out using these connections only. When 

the initialization phase is over, the algorithm enters the second stage. This is the working stage. This stage is also 

initiated by the server and is communicated to all the PEs.  

 

6.2 Working Stage 

The second stage of the algorithm is the working stage. In this stage the algorithm trains the ANN by BPA. The 

connections established in the previous step are used for communication. The working of the algorithm may also be 

seen at three distinct levels.  

 

At the topmost or the first level there is a server based load balancing system between the server and the clients. The 

server interrupts the training process (in synchronous to the completion of all pending computations) and takes the 

performance analysis of all the PEs. The revised computational load for the PEs is calculated and the same is 

communicated. This process is repeated in a predefined frequency. 

 

At the second level there is an implementation of the data set partitioning. Here the first job is to pass on the training 

data set from the server to all the PEs. These PEs take the required number of test cases and pass the rest to the next 

PE. After this step all the PEs involved in dataset partitioning have a data set with them. Then we start the process of 

training the ANN independently in all the PEs. Once the training is over the computed weights are passed in a 

circular manner and every PE updates weights in its copy of the ANN. This process of training for certain number of 

epochs and then passing on the computed weights is repeated for a number of iterations. 

 

The third level contains the implementation of the node or the layer partitioning which is independent for every data 

set partition PE. The data set partition ANN is trained as a joint effort of all the internal data set or node partitions. 

There is exchange of data between the various PEs as per the partitioning demands. The internal working of the two 

partitioning techniques has already been discussed. The whole training data set is passed in one epoch and the result 

is computed for the entire training of all the elements of that data set for one epoch. 

 

At the end of the required number of epochs, the training is finished. The final list of weights as computed by the 

data set partition nodes is regarded as the final weight vector and the same is used for the testing purposes. One of 



the critical aspects of the algorithm is to main a proper synchronization among the different steps to ensure that the 

activities take place in the correct order and no activity starts before the previous one has ended.  

 

7 Results 

The testing and analysis of the algorithm was done on a simulation engine built by the authors of their own. JAVA 

with Eclipse IDE was used as a developmental framework for the simulator. The simulator consisted of a central 

server program which was stored and executed at the central server used for the algorithm execution. This program 

had a separate module called input module where the inputs and targets could be specified or generated randomly. 

This is the only module that stores the training data centrally. Another module called network module stores the 

architecture of the final ANN. This module enables the users to form a network and alter the same as per 

requirements. This module also does the network formulation and initialization. Another module at the central server 

called partitioning module stores the partitioning details. It allocates the partitioning architecture and roles of each 

and every PE in the system. Text files are used for this purpose and they are parsed by a parser at the central server. 

All the PEs are identified by their IP addresses. The present simulation engine assumes all PEs in the same Local 

Area Network, although they may be easily generalized to other subnets as well. The server may execute commands 

to start or terminate the execution of the various PEs. The user only interacts with the central server while 

interaction with the other PEs for issues related to configuration, initialization, data exchange or control are carried 

by the server itself. The central server operates at two levels. The first level is the DEBUG level. Here the server 

prints the information regarding the runtime or any other specified information from time to time. The other level is 

the RUN level. In this the server only gives the final summary of training. 

 

The other PEs have another piece of program to work as an agent of data set partitioning, layer partitioning or node 

partitioning. The code to be executed and the architectural framework with which the execution takes place are set at 

the time of initialization. These PEs also run at two level. At the DEBUG level, they show details regarding the 

runtime or any other information desired by the user. At the RUN level, there is no output. All the features discussed 

in the algorithm were implemented using JAVA Socket programming, JAVA Multithreading programming and 

related technologies [38]. 

 

A major concern for the simulator is the synchronization between the threads. This was mandatory for the various 

tasks to perform the needed operations as per design in the same order and conveying the same meaning. JAVA 

thread synchronization using fundamentals of the classic Producer-Consumer problem was used for the same. 

Deadlock prevention cases were explicitly handled [38].  

 

The execution of the algorithm using this simulator followed a very simple cycle. First the user specifies the training 

inputs and targets in the input module. Then he specifies the network architecture in the network module. He then 

specifies the parallel partitioning architecture in the partitioning module. The level is specified as DEBUG to enable 

output of network information. The execution of program is carried out in any order in all the PEs. The user then 

performs the “start training” event at the server. The server configures all the PEs. All the sockets are initialized 

among the various PEs as per user specifications. The initialization data is exchanged between them. When all this is 

over, the server sends the “start train” command to all the PEs to start their working as per the algorithm.  

 

All simulations were done on the indicated number of computers acting as PEs. All these had 256 MB RAM with 

Pentium 3 processor.  

 

Before we discuss the data used for the testing, it would be wise to discuss the role of ANN with BPA in problem 

solving. Machine learning problems may be classified in two separate categories. These are functional prediction 

problems and classificatory problems. ANN with BPA is known for its generalizing capabilities where it tries to 

regress the available training data into a smooth function. It is hence observed that ANN with BPA is much suited 

for the functional prediction problems. Classification is more of a localized problem that is well solved by localized 

networks like Learning Vector Quantization (LVQ), Self Organizing Map (SOM), etc [41]. We hence concentrate 

our focus on the functional prediction problems for the testing purposes.  

 

In place of taking standard database from a standard repository, we chose to generate a synthetic database. The 

reason for the same is twofold. Firstly, standard data sets have limited number of training data items which are 

normally very small. The algorithm needs a very large number of data sets for good performances. Also the standard 

data sets can be trained using a limited number of layers and neurons. They denote simple problems that are easily 



solvable. It is further not advisable to increase the number of layers or neurons to avoid over-learning or over-

generalization [41]. The second problem is of complexity. One cannot change the complexity denoted by these 

problems which is a limitation in the use of standard database. This algorithm works well only for problems with 

huge data sets and high complexity to require more number of layers and neurons.  

 

The synthetic function we used to generate random data for this purpose is given in equation (8). This exhibits a 

large complexity as well as can be easily used to generate large number of data sets as per requirements. 

 

        (8) 

 

We also coded a single-system BPA and noted it’s time for execution. This was compared with the time taken by the 

parallel based system. 

 

We calculated the speed-up for all different architectures and number of PEs. The speedup is defined as the ratio of 

time taken in on a single system with that taken in parallel implementation given in equation (9). A higher speed-up 

means that the algorithm was able to train itself in lesser amount of time. The speed-up is better if we introduce 

more number of workstations. 

 

        (9) 

 

The first experiment was conducted on randomly generated inputs whose targets were calculated using equation (8). 

The network architecture used for this consisted of an input layer with 8 neurons, an output layer with 1 neuron and 

a hidden layer with 15 neurons. The network so formed was allowed to train for 150000 iterations. After every 

50000 iterations the server was allowed to redistribute the work load among the PEs using the discussed 

mechanisms. The number of PEs was varied from 2 to 20. The same experiment with same data was carried out with 

a single system as well. This gave us the sequential execution time for all cases. Speedups for the various number of 

PEs were measured. Figure 11(a) shows the rise in speedup with the increase in the number of PEs. The values of 

speedups for various number of PEs along with the execution times are given in table 1(a). 

 

Here we proposed a server client relation for redistribution of inputs. We tested the algorithm without this feature as 

well. We found that the speedup reduced by a considerable amount, which proves the importance of the self 

adaptive nature of the algorithm. The rise in speedup with increase in the number of PEs without use of load 

balancing feature is given in figure 11(b). The values of speedups for various number of PEs along with the 

execution times are given in table 1(b). The network, partitioning architecture and data set were similar to our 

previous experiment apart from the fact that the redistribution of workload after 50000 iterations was not carried out. 

 

 

In order to study the affect of addition of neurons in the algorithm, we carried out another experiment. A function 

similar to equation (8) was used. This time there was one input layer with 11 neurons, 1 output layer with 1 neuron 

and 1 hidden layer with 25 neurons. The learning was carried forward till 150000 iterations. A total of 500 training 

data cases were generated. Again there were two set of executions done. First run was with the load balancing factor 

using load balancing after 50000 iterations as in experiment 1. The plot for the speedup for varying number of PEs 

for this experiment is given in figure 11(c). Table 1(c) gives the corresponding speedup values. The second was 

without the load balancing factor. Figure 11(d) plots the speedup values and table 1(d) gives the corresponding 

speedups. 

 

8 Conclusions 

In this paper we proposed a novel approach to parallel implementation of the ANN. We also discussed its relevance 

with the brain that was a motivation behind the work. We proposed a model that we propose is similar in nature to 

the working of the human brain in special cases of disabilities.  

 

We proposed a multi system (or multi PE) parallel implementation of ANN for PEs with different working 

capabilities. The parallel implementation helped us attain higher speedups. The system performed faster than the 

traditional methods in cases of difference in configuration of the PEs. We applied three types of partitioning 



techniques: node partitioning, layer partitioning and dataset partitions in a hierarchical manner to get the best out of 

the system working in parallel. We proposed this hierarchical nature where the different types of partitioning were 

applied one after the other to get the final output weight vector of trained ANN. The higher speedup of the ANN was 

responsible due to the very high partitioning that was employed. 

 

   
 
Figure 11(a): Speedup v/s No of PEs (Experiment 1)  Figure 11(b): Speedup v/s No of PEs 

(Experiment 1) without self adaptive approach 

 

   
 

Figure 11(c): Speedup v/s No of PEs (Experiment 2)  

 

Figure 11(d): Speedup v/s No of PEs (Experiment 2) 

without self adaptive approach 

 

Table 1(a): Speedups for Experiment 1 

 

No of 

PEs 

No of 

training 

data 

sets 

Network 

Architecture Epochs 

Server 

Sync 

after 

iterations 

Time 

Serial 

(in ms) 

Time 

Parallel 

(in ms) Speedup 

2 500 8-15-1 150000 50000 823737 982521 0.838391 

4 500 8-15-1 150000 50000 823737 530306 1.553324 

6 500 8-15-1 150000 50000 823737 384294 2.143507 

8 500 8-15-1 150000 50000 823737 263511 3.126006 

10 500 8-15-1 150000 50000 823737 211249 3.899365 

20 500 8-15-1 150000 50000 823737 89225 9.232132 

 

 

 

 

 

 

 



Table 1(b): Speedups for Experiment 1 without self adaptive approach 

 

No of 

PEs 

No of 

training 

data sets 

Network 

Architect

ure Epochs 

Server Sync 

after iterations 

Time 

Serial 

(in ms) 

Time 

Parallel 

(in ms) Speedup 

2 500 8-15-1 150000 NA 823737 993483 0.829141 

4 500 8-15-1 150000 NA 823737 674358 1.221513 

6 500 8-15-1 150000 NA 823737 473899 1.738212 

8 500 8-15-1 150000 NA 823737 342174 2.407363 

10 500 8-15-1 150000 NA 823737 303214 2.716685 

20 500 8-15-1 150000 NA 823737 97180 8.476405 

 

Table 1(c): Speedups for Experiment 2 

 

No of 

PEs 

No of 

training 

data 

sets 

Network 

Architecture Epochs 

Server 

Sync after 

iterations 

Time 

Serial 

(in ms) 

Time 

Parallel 

(in ms) Speedup 

2 500 11-25-1 150000 50000 1733690 1829312 0.947728 

4 500 11-25-1 150000 50000 1733690 984654 1.76071 

6 500 11-25-1 150000 50000 1733690 644070 2.691773 

8 500 11-25-1 150000 50000 1733690 486311 3.564982 

10 500 11-25-1 150000 50000 1733690 429221 4.039155 

20 500 11-25-1 150000 50000 1733690 179378 9.665009 

 

Table 1(d): Speedups for Experiment 2 without self adaptive approach 

 

No of 

PEs 

No of 

training 

data 

sets 

Network 

Architecture Epochs 

Server 

Sync 

after 

iterations 

Time 

Serial 

(in ms) 

Time 

Parallel 

(in ms) Speedup 

2 500 11-25-1 150000 NA 1733690 1911289 0.907079 

4 500 11-25-1 150000 NA 1733690 1175223 1.475201 

6 500 11-25-1 150000 NA 1733690 683619 2.536047 

8 500 11-25-1 150000 NA 1733690 548465 3.160986 

10 500 11-25-1 150000 NA 1733690 471293 3.678582 

20 500 11-25-1 150000 NA 1733690 196229 8.835035 

 

The entire system is based on a server-client approach, where the role of the server is to balance the work load 

among the various PEs. This balancing helped us in controlling the network performance when certain nodes might 

become less responsive or more responsive in an adaptive manner.  

 

As a result we saw a huge computational speed-up when we applied this over a synthetic database. The high speed-

up attained by this algorithm clearly shows that the algorithm has immense potential for improving the speed of 

training of the neural network especially when different nodes have different processing powers. The speed up was 

more than any of the traditionally applied techniques.  

 

We have proposed a robust method of implementing BPA across various kinds of nodes. The algorithm so far has no 

capability to change the architecture of the system. This is something that is believed to happen in the human brain 

where new connections are made and older ones are destroyed. This would make the system completely dynamic. 

Such a dynamic system may be designed in future. Also a peer-to-peer architecture may be modeled in place of our 

approach of server client architecture. This would further boost the speedup. 
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