
Fusion of Evolutionary Algorithms and Multi-Neuron Heuristic Search for Robotic

Path Planning

Rahul Kala

Department of Information

Technology

Indian Institute of Information

Technology and Management

Gwalior

Gwalior, Madhya Pradesh, India

rahulkalaiiitm@yahoo.co.in

Anupam Shukla

Department of Information

Technology

Indian Institute of Information

Technology and Management

Gwalior

Gwalior, Madhya Pradesh, India

dranupamshukla@gmail.com

Ritu Tiwari

Department of Information

Technology

Indian Institute of Information

Technology and Management

Gwalior

Gwalior, Madhya Pradesh, India

rt_twr@yahoo.co.in

Citation: R. Kala, A. Shukla, R. Tiwari (2009) Fusion of Evolutionary Algorithms and Multi-Neuron Heuristic Search for

Robotic Path Planning, Proceedings of the 2009 IEEE World Congress on Nature & Biologically Inspired Computing,

Coimbatote, India, pp 684 – 689.

Final Version Available At: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5393464

© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

Abstract—The problem of path planning deserves a special

mention in the field of robotics as it enables the intelligent

systems used in autonomous robots to move the robot from one

position to the other. Out of the various methods used for

solving the problem of robot path planning, two of the common

approaches include Multi-Neuron Heuristic Search (MNHS)

algorithm and Evolutionary Algorithms (EA). The MNHS

algorithm is an algorithm proposed earlier by the authors for

solving uncertain search problems. The algorithm is slow but

gives better optimal paths. On the other hand the EA gives

results in finite time, but the optimality cannot be guaranteed.

In this paper we propose to mix these two techniques to get the

added benefits of both these algorithms. The MNHS improves

the performance of the algorithm while the EA does the task of

time optimization especially in case of complex graphs. The EA

carries forward the task of selection of points in the robotic

map. These points are checked for feasibility and then

converted into a traversable graph. The same is used by

MNHS to find the most optimal path from source to

destination. In this way the algorithm finds out the best path

without robotic collision.

Keywords-robotic path planning; multi-neuron heuristic

search; evolutionary algorithms; autonomous robotics;

intelligent systems

I. INTRODUCTION

Robotic Path Planning is one of the problems in the field
of robotics that tries to find and optimize the path from the
initial position to the final position. [1]. Besides

optimization, it needs to be ensured that the robot moves
without any collision in the entire path it follows from the
source to the destination. This would mean that the algorithm
avoids all obstacles and reaches the destination starting from
the source in the least time possible. This is also referred to
as the navigation plan of the robot. The problem is usually
studied in two separate heads. These are path planning under
static environment and path planning under dynamic
environment. In static environment the condition of the
robotic map is constant and does not change with respect to
time due to the absence of the moving obstacles. In dynamic
environment path planning however, the map keeps
changing with the passage of time. This is due to the
presence of dynamic obstacles like other robots, vehicles,
etc.

Path planning is one of the numerous algorithms used in
the problem of robotics. The whole problem of intelligent
robotics involves the simultaneous contribution of people
from varied backgrounds and disciples. The sensors and
sensor data, the building up of the map, the communication
between robots or between robots and machine, visual
processing, and multi-robot coordination are some of the
major tasks in robotics that require participation from
different people.

The robot may be easily made to follow the path that the
algorithm runs by any robotic controller. The controllers try
to guide the robot in a step by step manner so that it follows
the desired path in the least possible time.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5393464

The elementary model of cognition [5] includes three
main cycles. Among these, the ‘sensing-action’ cycle is most
common for mobile robots. This cycle inputs the location of
the obstacles and subsequently generates the control
commands for the motors to set them in motion. The second
cycle passes through perception and planning states of
cognition, while the third includes all possible states
including sensing, acquisition, perception, planning and
action [6]. Sensing here is done by ultrasonic sensors/camera
or by both. There are many algorithms for construction of the
robot’s world map [7]. The term Planning of Navigation [8]
refers to the generation of sequences of action in order to
reach a given goal state from a predefined starting state.

The MNHS [21] is an advanced form of A* algorithm
that was earlier proposed by the authors. The A* algorithm
does not give good results in the absence of good heuristics.
If the choice of heuristics is bad, then the algorithm would
normally not perform well or would take a lot of time. The
performance of the A* algorithm to a large extent is
dependent on the heuristics.

It was also earlier shown by the authors that the A*
algorithm gives good results when used in the problem of
robotic path planning [22]. It gave the best results or the
shortest results possible. These were found to be better than
those obtained from the ANN or Evolutionary Algorithms
[23]. However, the A* algorithm is known to be
computationally expensive.

The motivation behind the use of MNHS is to keep
backup paths ready and explore them also from time to time,
so that if some region completely fails to give a correct
solution, the other paths are already explored to a good
extent. If the 2nd backup path also fails, then the 3rd backup
path is also explored to a fair extent. This is possible due to
the inherent nature of the MNHS that equally respects the
various heuristic values from bad to good and expands all of
them. This is done as it is possible that the bad heuristics
may suddenly turn good and vice versa.

As the entire algorithm can be time consuming, there
needs to be some mechanism to optimize the time. This is
done with the help of evolutionary algorithms. Rather than
giving the entire map to the MNHS for the purpose of path
planning, only a small set of points chosen by the EA are
given to the MNHS for the task of finding the smallest route.
This greatly limits the search space of the MNHS and results
in a big computational optimization. The location of the
various points may be optimized by the EA as the algorithm
runs and proceeds for convergence.

II. RELATED RESEARCH

The problem of robot navigation control, due to its
applicability, is of a great interest. We have already seen
good research in various modules. A lot of work exists to
model the entire problem [1 - 7]. There exist good algorithms
to scan the environment and represent all the obstacles in
form of a grid [3]. Also various algorithms have been
proposed to plan the movement of the robot using various
conditions.

The whole problem until now has been seen under
separate heads of planning navigation control of static

environment and planning navigation control of dynamic
environment. If we come to static environment, many
algorithms have been implemented and results verified [8,
10, 11, 19]. In planning dynamic environment the steps are a
little different, as the environment continuously changes.

We also have various works of research in which people
have tried to solve the navigation problem using genetic
algorithm [8, 10, 11, 16].

Also similar work exists in neural network [6, 11, 15].
Here neural network has been applied mainly on static data.

III. MULTI NEURON HEURISTIC SEARCH

The Multi-Neuron Heuristic Search (MNHS) algorithm
can be taken as an improvement over the A* algorithm
where the heuristic function exists, but is bound to change
suddenly. The A* algorithm uses heuristic function in order
to get the search closer and closer to the goal. But when
heuristics change suddenly, the strategy is destroyed. Hence
these algorithms suffer. A solution may be not to use the
heuristics at all. But if the heuristic function is available, it is
always better to use it rather than not to use it altogether as is
the case with other non-heuristic algorithms like breadth-first
search.

The algorithm can be applied to the cases where the
following problems occur in heuristic functions:

 The heuristic function reaches near goal, but suddenly

shows that no way is possible to reach goal.

 The heuristic function keeps fluctuating from the good

values to bad values making it hard to predict the goal.

 The heuristic function drops suddenly from very high

value to low value.

These conditions can easily be understood from the
problem of maze solving, if the heuristic function of any
point (x,y) on the maze denotes its squared distance from the
goal. We can see that if the search algorithm reaches last but
one position and then finds itself surrounded by walls, the
heuristics increase suddenly. Similarly if the solution is a
series of bad moves followed by another series of good
moves, the heuristics decrease from high to low.

Hence in such problems though we may take the heuristic
function, its performance would be low. The solution is to
use MNHS which respects all the good, bad and moderate
values of heuristics, so that no value suffers.

The basic idea of this algorithm is the use of many
neurons working one after the other. Each of these takes care
of high to low values of the heuristic functions. The
algorithm hence gives respect to all values of the heuristics.
It may be seen as the way of employing different neurons for
different types of works. Whichever finds the target is rated
successful. If you were to find a treasure, it would be
justified to divide your team at various places, some at high
probability places, and some at low.

In all we take α neurons. We have a list of heuristic costs
each corresponding to node seen but waiting to be processed.
We divide the cost range into equal α ranges. Each of these
neurons is given a particular range. Each neuron selects the
minimum most element of the cost range allotted to it and

starts searching. At one step of each neuron processes its
element by searching and expanding the element. This
process is repeated.

A. Algorithm

Step 1: open ← empty priority queue

Step 2: closed ← empty list

Step 3: add a node n in open such that position(n) =

CurrentPosition, previous(n) = null and f(n), g(n), h(n) are

as calculated by respective formulas with priority f(n)

Step 4: while open is not empty

Step 5: extract the node n1, n2, n3, n4….. nα from open

with the priority of n1 as highest and the others equally

distributed between other α-1 nodes.

Step 6: if ni = final position for i=1,2,3,4,5…..α then

break

Step 7: else

Step 8: nodes ← nodes from the expanding of node

ni

Step 9: for each node m in nodes

Step 10: if m is already in open list and is equally

good or better then discard this move

Step 11: if m is already in closed list and is

equally good or better then discard this move

Step 12 delete m from open and closed lists

Step 13: make m as new node

with parent n

Step 14: calculate f(m), h(m),

g(m)

Step 15: Add node m to open

with priority f(m)

Step 16: Add n to closed

Step 17: Remove n from open

Consider the problem of solving a maze. The problem is

that we have to move from the initial position to the final
position in the maze without colliding from walls.

Refer Figure 1(a) for the problem input. Here 0
represents the region we cannot move (wall) and 1 represents
the region we can move (path). Top left is the start point.
Bottom right is the finish point. The heuristic function is
taken as the square of the distance of the current point to the
final point. The solution generated by the MNHS is given in
figure 1(b). The numbers in results show the order in which
they were discovered. The number of bottom right corner is
the number of nodes explored.

B. MNHS in Path Planning

The research so far has been using path planning for
relatively simple paths. Researchers try to place obstacles in
the way and try to see the behavior of the robots. In practical
life, it can never be assumed that the path would be so
simple. The reason is the numerous possibilities of obstacles
in numerous ways. Consider a robot cleaning a house. There
would be multiple paths possible with numerous obstacles of
varying sizes. The robot is supposed to avoid all of them and
reach the destination. The scalability of these algorithms is
quite limited in nature. In the presence of complex maps they

can hence cause problems. An example would be the maze
like structure where a robot has to find its way out of the
maze.

1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 0 1

1 0 0 0 0 0 0 1 0 1

1 1 1 1 1 1 0 1 0 1

1 0 0 0 0 1 0 1 0 1

1 1 1 1 0 1 0 1 0 1

1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

Figure 1(a): The maze solving problem input

01 02 04 06 08 09 11 13 15 17

03 00 00 00 00 00 00 00 00 19

05 10 26 28 35 40 00 00 00 21

07 00 00 00 00 00 00 22 00 00

12 32 00 00 00 00 00 00 00 23

14 00 00 00 00 00 00 00 00 25

16 24 38 00 00 00 00 00 00 27

18 00 00 00 00 00 00 00 00 00

20 29 30 31 33 34 26 37 39 41

Figure 1(b): The solution generated by MNHS

The MNHS algorithm takes care of these problems by
trying to exploit each and every path possible. This has a
multiplying effect on the time complexity, but in return is an
assurance in case of the rapid change in heuristics. This is
what would come to rescue if by chance the robot reached
quite near to the goal only to find that there is no way to
reach it.

This concept is shown in Figure 2. Here the best path has
almost reached the goal. At the same time the other paths
have been expanded to a reasonably good degree that is
ready to provide a backup. The obstacles have not been
shown in the figure.

Figure 2: The MNHS path exploration

For this problem the historical cost is taken as the
distance traversed from the source to the current position.
The heuristic cost is the physical distance of the current
position to the goal position. The total cost is the sum of both
the costs.

IV. EVOLUTIONARY ALGORITHMS

The primary work of EA is time optimization of the
entire algorithm. It is known that the A* algorithm may be
very time consuming when practically applied to complex
maps [23]. The runtime of the A* algorithm depends a lot
upon its search space. This is the number of nodes given to
the algorithm. The MNHS being a modified version of A*
follows similar trends where the total number of points in the
map or the number of grids affect the complexity of the
algorithm. The EA controls the algorithm optimality by
limiting the number of points in the graph that the MNHS
has to consider while optimizing the total path length. There
are three major parts of this algorithm. Each of which is
discussed in the subsequent sub-sections.

A. Individual Representation

One of the foremost tasks in this algorithm is a good
individual representation. They may be scattered throughout
the robotic map at various locations. Here we represent an
individual by a collection of points (Pi) on the robotic map.
We place a restriction here that the individual size is fixed to
β. This means that the individual can have a maximum of β
points in its collection. The complete individual hence
becomes <P0, P1, P2, P3, …. Pβ, Pβ+1>. Here P0 is the source
and Pβ+1 is the goal. This collection is given to the MNHS to
work over the most optimal path out of this collection of
points.

Each point is a collection of x and y coordinates and may
be denoted by (xi, yi). The x axis that we take for this
problem is the straight line joining the source and the goal.
The y axis is perpendicular to the x-axis as given in Figure 3.

Let us suppose that the map is represented in the
coordinate system X’-Y’ given in Figure 3. Now any point
needs to lie within the range of (0’,0’) to (m’,n’) so as to lie
within the map. Here ‘ represents the use of X’-Y’
coordinate system. This range needs to be converted into
equivalent range in the X-Y coordinate system of the
individual to generate valid points in the robotic map. This is
done by a rotation of angle ‘a’ in the clockwise direction,
where ‘a’ is the angle between the two coordinate systems
given in Figure 3.

Another important characteristic of the individual
representation is that the various points in the map are
always sorted along the X axis. The final path is the path
traversed by touching the various points in a straight line one
after the other. Here the source is the first point and goal is
the last point. Hence we assume that in the final path, the
robot cannot move backwards.

The entire length of the chromosome is hence fixed to a
maximum value of 2 x β. If β is set to 10 and each Pi denotes
the point (xi,yi) then the genetic individual of this path would
be represented as <x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8
y8 x9 y9 x10 y10 >.

Figure 3: The coordinate system for individual
representation and robotic map

B. Conversion to a Graph

So far we have a collection of β+1 points in the map. But
the MNHS works on a graph. Hence we need to convert this
collection of points into a graph so that the MNHS can work
over the most optimal distance over this pool of points.

The graph that we give to the MNHS has the collection
of β+1 points as the vertices. An edge exists between any
vertex i to any vertex j if the robot can travel from i to j
without any collision with obstacles. The weight of the edge
is taken to be the physical distance between the vertices i and
j. One of the major problems comes in the determination of
feasibility of the path. To determine the feasibility of the
path between any two vertices, we travel between the two
vertices and check for the presence of obstacles. If an
obstacle exists, the path is considered as infeasible and the
traversal stops.

The adjacency matrix representation of graph has been
used. This is a matrix whose every element aij denotes the
existence of an edge between the vertex i and j. The element
stores the weight of the weight if an edge exists, else it stores
infinity. Sine this is an undirected graph, hence aij = aji. Also
the diagonal elements are all kept as zeros.

This graph is given to the MNHS in the fitness function
of the EA. The first node is specified as the source and the
last one is specified as the destination of the EA.

C. Evolutionary Operators

The EA uses various operators to carry out the task of
optimization. It uses a rank based fitness method and a
stochastic selection technique. The two major operators used
are crossover and mutation. Both these operators have been
adapted as per the problem. Crossover is point based where
the new individual gets half the points in the form of (x,y)
from the first parent and the other half from the second

X'

’

Y’
(0,0)

X

’

X

Y

Goal

Source

(m’,n’)

(x,y)

a

parent. Scattered crossover is used for this purpose. Similarly
mutation is point based where the mutation operator
physically moves points represented by individuals on the
map where the magnitude of movement depends upon the
mutation rate. Elite is another operator used to pass on the
best few individuals from one generation to the other. The
explanation of the various operators can be found in [24].

V. RELATION BETWEEN EA AND MNHS

We have already stated that the EA does path optimality
and the MNHS carries forward the task of path optimality. In
this section we explicitly state this relation that also speaks
about the algorithm optimality as compared to the other
simple and hybrid approaches.

The MNHS algorithm fails to work in the presence of
large number of nodes due to the large time complexity.
Since it is not an iterative algorithm, we cannot break its run
to get the path. This makes it impossible to use MNHS or
other heuristic algorithms in most real life scenarios. As a
result we need an algorithm that can reduce the
dimensionality and select the best nodes for the MNHS to
perform in finite time. The MNHS can easily work over a
reduced set of points to give the most optimal paths.

The EA is an iterative manner of solving problems. One
of the main disadvantages of the algorithm is that it only tries
to generate paths based on the fitness of the paths of the
previous generations. This makes the algorithm make slow
convergence in path optimality. The solutions come early but
are not optimal. Hence this algorithm needs the assistance of
some heuristics that enable it to form good paths and figure
out good and bad points that make up a path.

Hence the combination of both these algorithms solves
the twin problem of path optimality and time. It may be
easily seen from the algorithm that the mutual contribution
of the two algorithms is controlled by the factor β. If β is
very small, the resultant algorithm would be dominated by
EA. The MNHS would have very little choice between the
nodes selection. On the other hand if β is very large, the
algorithm would be primarily MNHS in nature. The
placement of nodes would lose importance as compared to
the path formulation between them.

VI. RESULTS

The problem of path planning deals with the
determination of a path which navigates the robot in such a
way that no collision occurs. In order to solve the problem
we assume that the input is already available in form of a
map. Here we assume that the map is available in form of
grid of size MXN. Each of the cells of this grid contains 0 or
1. A 0 in such a grid signifies that the region has an obstacle
present. Similarly a 1 signifies that the region is traversable
and may be used for the purpose of travelling. The obstacles
may span across multiple cells. The black regions here
signify the presence of obstacles.

It is further assumed that the grid given as input is of
considerable size. If the grid exceeds a certain threshold of
size, it would become computationally impossible for the
algorithm to find a result. Hence, we restrict the size of the
map according to the computational capability and time

constraints in whatever real life specific problem is being
considered.

The algorithm would generate as its output a path that
can be used by the robot for the navigation purposes. The
path may be traversed using any robotic controller. This is
for the execution of the steps given by the planning
algorithm.

In order to test the algorithm, we developed a simulation
engine of our own. The engine was made keeping in mind
the practical applicability of the algorithm on the robot. The
simulation engine took as input the map. This was given in
the form of an image. The algorithm then executed the
algorithm to compute the path. The path was shown using
JAVA Applets.

We applied various tests to the algorithm in order to
ensure that the algorithm behaves well in each and every
condition. In all the cases the map was of size 1000X1000
and the robot was supposed to move from the top left corner
to the bottom right corner. The value of α of MNHS was
fixed as 2. The EA parameters consisted of 125 individuals,
100 generations, 2 as the elite count, 0.78 crossover rate and
0.06 mutation rate. The individual size β was kept as 5. All
simulations were made on a 256 MB RAM and 585 MHz
processor. All runs took less than 50 seconds with a very
high convergence of the path length.

Figure 4: The path generated by MNHS for no obstacle.

Figure 5: The run for single obstacle in case II

Figure 6: The run for complex obstacles in case III

Figure 7: The second run for complex obstacles in case

III

Initially we did not place any obstacle in the path from
the source to destination. We observed that the algorithm
traced the path from the source to the destination following a
straight line path. The results of the algorithm are shown in
Figure 4. The second case we considered was of a single
obstacle in the path from the source to destination. The robot
easily avoided the obstacle and marched towards the goal
position. The results of the algorithm are shown in Figure 5.
The last case we presented before the algorithm was to test
its ability to handle complex inputs. Various complex
obstacles were placed in the path of the robot from the
source to destination. The robot again easily avoided the
obstacle and marched towards the goal position. The results
of the algorithm are shown in Figure 6 and 7.

VII. CONCLUSIONS

In this paper we proposed the use of MNHS and EA to
solve the problem of robotic path planning. We saw that we
were able to solve the problem in almost all given scenarios
well in time. The MNHS proved to be a great algorithm for
the purpose of optimality of path which is a very important
parameter for the algorithm. At the same time the optimality
of the total time of execution was provided by the use of EA.
The EA gave limited points in the entire map to the MNHS.
Hence using the two algorithms, we were able to optimize
both the time and the total path length. This hence proved to
be a very important algorithm that could solve much of the
problems present in the earlier techniques of robotic path
planning.

A beautiful relation exists between the A* algorithm as
well as the MNHS. Suppose we want more of path
optimality. A very natural choice would be to make the
MNHS dominant in the entire algorithm. Similarly say we
want more of time optimality. This can be achieved by
making the EA more dominant in the algorithm. Hence a
controlling measure must exist between the two algorithms.
This controlling measure is provided by the use of the EA
size constant β. Suppose the value of β is very large. Now
the MNHS would be dominant and vice versa.

The algorithm further needs to be used in practical life
scenarios which are more complex than the cases presented
here. Also the value of α and β was kept constant in the cases
presented. The determination and setting of the most optimal
values needs to be studied in the future. The algorithm may
further be developed for real time dynamic obstacles as well
which would help in practical implementation of the

algorithm. This may be done by the inclusion of any
behavioral robotic controller like he neuro fuzzy controllers.

REFERENCES

[1] Hutchinson, S. A. and Kak, A. C., "Planning sensing strategies in a
robot work cell with Multi-sensor capabilities," IEEE Trans. On
Robotics and Automation, vol.5, no.6, 1989.

[2] Rich, E. and Knight, K., Artificial Intelligence, McGraw-Hill, New
York, pp. 29-98, 1991.

[3] Takahashi, O. and Schilling, R. J., "Motion planning in a plane using
generalized voronoi diagrams," IEEE Trans. on Robotics and
Automation, vol.5, no.2, 1989.

[4] Borenstain, J., Everett, H. R., and Feng, L., Navigating “Mobile
Robots: Systems and Techniques”, A. K. Peters, Wellesley, 1996

[5] Matlin, W. Margaret, Cognition, Hault Sounders, printed and
circulated by Prism books, India, 1996.

[6] Konar, A. and Pal, S., “Modeling cognition with fuzzy neural nets” In
Fuzzy Systems Theory: Techniques and Applications, Leondes, C. T.,
Ed., Academic Press, New York, 1999.

[7] Pagac, D., Nebot, E. M. and Durrant. W., H., “An evidential approach
to map building for autonomous robots,” IEEE Trans. On Robotics
and Automation, vol.14, no.2, pp. 623-629, Aug. 1998.

[8] V. Ayala-Ramirez, A. Perez-Garcia, E J. Montecillo-Puente, R.E.
Sanchez-Yanez, “Path planning using genetic algorithms for mini-
robotic tasks”, 2004 IEEE International Conference on Systems, Man
and Cybernetics

[9] Hem Fkezza-Buet, FrBd6ric Alexandre “Modeling prefrontal
functions for robot navigation”

[10] Theodore W. Manikas, Kaveh Ashenayi, and Roger L. Wainwright,
“Genetic Algorithms for Autonomous Robot Navigation”, IEEE
Instrumentation & Measurement Magazine December 2007

[11] Du Xin, Chen Hua-hua, Gu Wei-kang, “Neural network and genetic
algorithm based global path planning in a static environment”,
Journal of Zhejiang University SCIENCE

[12] Zhang Huan-cheng, Zhu Miao-liang, “Self-organized architecture for
outdoor mobile robot navigation”, Journal of Zhejiang University
SCIENCE

[13] Peter Corke, Ron Peterson, Daniela Rus, “Networked Robots: Flying
Robot Navigation using a Sensor Net”, April 18, 2003

[14] Cory Quammen, “Evolutionary learning in mobile robot navigation”,
The ACM Student Magazine

[15] Yong-Kyun Na and Se-Young Oh, “Hybrid Control for Autonomous
Mobile Robot Navigation Using Neural Network Based Behavior
Modules and Environment Classification”, 2003 Kluwer Academic
Publishers, Manufactured in The Netherlands

[16] Seyyed Ehsan Mahmoudi, Ali Akhavan Bitaghsir, Behjat
Forouzandeh and Ali Reza Marandi, “A New Genetic Method for
Mobile Robot Navigation”, 10th IEEE International Conference on
Methods and Models in Automation and Robotics, 30 August - 2
September 2004, Miedzyzdroje, Poland

[17] Torvald Ersson and Xiaoming Hu, “Path Planning and Navigation of
Mobile Robots in Unknown Environments”

[18] László Kiss, Annamária R. Várkonyi-Kóczy, “A Universal Vision-
based Navigation System for Autonomous Indoor Robots”

[19] Sven Behnke, “Local Multiresolution Path Planning”, Preliminary
version in Proc. of 7th RoboCup Int. Symposium, Padua, Italy, 2003

[20] S. Veera Ragavan, and V. Ganapathy, “A Unified Framework for a
Robust Conflict-Free Robot Navigation”, Proceedings of World
Academy of Science, Engineering and Technology, Volume 21
January 2007 ISSN 1307-6884

[21] Shukla, Anupam & Kala, Rahul; “Multi Neuron Heuristic Search”,
International Journal of Computer Science and Network Security,
Vol. 8, No. 6, pp 344-350, June 2008

[22] Shukla, Anupam; Tiwari, Ritu & Kala, Rahul; “Mobile Robot
Navigation Control in Moving Obstacle Environment using A*
Algorithm”, Intelligent Systems Engineering Systems through
Artificial Neural Networks, ASME Publications, Vol. 18, pp 113-120,
Nov 2008

[23] Kala, Rahul; et. al., “Mobile Robot Navigation Control in Moving
Obstacle Environment using Genetic Algorithm, Artificial Neural
Networks and A* Algorithm”, Proceedings of the IEEE World
Congress on Computer Science and Information Engineering (CSIE
2009), ieeexplore, April 2009, Los Angeles/Anaheim, USA, pp 705-
713

[24] Mitchell, M; “An Introduction to Genetic Algorithms”, 1996,
Cambridge, MA: MIT Press.

