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Abstract—The problem of path planning deserves a special 

mention in the field of robotics as it enables the intelligent 

systems used in autonomous robots to move the robot from one 

position to the other. Out of the various methods used for 

solving the problem of robot path planning, two of the common 

approaches include Multi-Neuron Heuristic Search (MNHS) 

algorithm and Evolutionary Algorithms (EA). The MNHS 

algorithm is an algorithm proposed earlier by the authors for 

solving uncertain search problems. The algorithm is slow but 

gives better optimal paths. On the other hand the EA gives 

results in finite time, but the optimality cannot be guaranteed. 

In this paper we propose to mix these two techniques to get the 

added benefits of both these algorithms. The MNHS improves 

the performance of the algorithm while the EA does the task of 

time optimization especially in case of complex graphs. The EA 

carries forward the task of selection of points in the robotic 

map. These points are checked for feasibility and then 

converted into a traversable graph. The same is used by 

MNHS to find the most optimal path from source to 

destination. In this way the algorithm finds out the best path 

without robotic collision.  

Keywords-robotic path planning; multi-neuron heuristic 

search; evolutionary algorithms; autonomous robotics; 

intelligent systems 

I.  INTRODUCTION  

Robotic Path Planning is one of the problems in the field 
of robotics that tries to find and optimize the path from the 
initial position to the final position. [1]. Besides 

optimization, it needs to be ensured that the robot moves 
without any collision in the entire path it follows from the 
source to the destination. This would mean that the algorithm 
avoids all obstacles and reaches the destination starting from 
the source in the least time possible. This is also referred to 
as the navigation plan of the robot. The problem is usually 
studied in two separate heads. These are path planning under 
static environment and path planning under dynamic 
environment. In static environment the condition of the 
robotic map is constant and does not change with respect to 
time due to the absence of the moving obstacles. In dynamic 
environment path planning however, the map keeps 
changing with the passage of time. This is due to the 
presence of dynamic obstacles like other robots, vehicles, 
etc.  

Path planning is one of the numerous algorithms used in 
the problem of robotics. The whole problem of intelligent 
robotics involves the simultaneous contribution of people 
from varied backgrounds and disciples. The sensors and 
sensor data, the building up of the map, the communication 
between robots or between robots and machine, visual 
processing, and multi-robot coordination are some of the 
major tasks in robotics that require participation from 
different people.  

The robot may be easily made to follow the path that the 
algorithm runs by any robotic controller. The controllers try 
to guide the robot in a step by step manner so that it follows 
the desired path in the least possible time.  
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The elementary model of cognition [5] includes three 
main cycles. Among these, the ‘sensing-action’ cycle is most 
common for mobile robots. This cycle inputs the location of 
the obstacles and subsequently generates the control 
commands for the motors to set them in motion. The second 
cycle passes through perception and planning states of 
cognition, while the third includes all possible states 
including sensing, acquisition, perception, planning and 
action [6]. Sensing here is done by ultrasonic sensors/camera 
or by both. There are many algorithms for construction of the 
robot’s world map [7]. The term Planning of Navigation [8] 
refers to the generation of sequences of action in order to 
reach a given goal state from a predefined starting state. 

The MNHS [21] is an advanced form of A* algorithm 
that was earlier proposed by the authors. The A* algorithm 
does not give good results in the absence of good heuristics. 
If the choice of heuristics is bad, then the algorithm would 
normally not perform well or would take a lot of time. The 
performance of the A* algorithm to a large extent is 
dependent on the heuristics.  

It was also earlier shown by the authors that the A* 
algorithm gives good results when used in the problem of 
robotic path planning [22]. It gave the best results or the 
shortest results possible. These were found to be better than 
those obtained from the ANN or Evolutionary Algorithms 
[23]. However, the A* algorithm is known to be 
computationally expensive. 

The motivation behind the use of MNHS is to keep 
backup paths ready and explore them also from time to time, 
so that if some region completely fails to give a correct 
solution, the other paths are already explored to a good 
extent. If the 2nd backup path also fails, then the 3rd backup 
path is also explored to a fair extent. This is possible due to 
the inherent nature of the MNHS that equally respects the 
various heuristic values from bad to good and expands all of 
them. This is done as it is possible that the bad heuristics 
may suddenly turn good and vice versa. 

As the entire algorithm can be time consuming, there 
needs to be some mechanism to optimize the time. This is 
done with the help of evolutionary algorithms. Rather than 
giving the entire map to the MNHS for the purpose of path 
planning, only a small set of points chosen by the EA are 
given to the MNHS for the task of finding the smallest route. 
This greatly limits the search space of the MNHS and results 
in a big computational optimization. The location of the 
various points may be optimized by the EA as the algorithm 
runs and proceeds for convergence.  

II. RELATED RESEARCH 

The problem of robot navigation control, due to its 
applicability, is of a great interest. We have already seen 
good research in various modules. A lot of work exists to 
model the entire problem [1 - 7]. There exist good algorithms 
to scan the environment and represent all the obstacles in 
form of a grid [3]. Also various algorithms have been 
proposed to plan the movement of the robot using various 
conditions. 

The whole problem until now has been seen under 
separate heads of planning navigation control of static 

environment and planning navigation control of dynamic 
environment. If we come to static environment, many 
algorithms have been implemented and results verified [8, 
10, 11, 19]. In planning dynamic environment the steps are a 
little different, as the environment continuously changes. 

We also have various works of research in which people 
have tried to solve the navigation problem using genetic 
algorithm [8, 10, 11, 16].  

Also similar work exists in neural network [6, 11, 15]. 
Here neural network has been applied mainly on static data.  

III. MULTI NEURON HEURISTIC SEARCH 

The Multi-Neuron Heuristic Search (MNHS) algorithm 
can be taken as an improvement over the A* algorithm 
where the heuristic function exists, but is bound to change 
suddenly. The A* algorithm uses heuristic function in order 
to get the search closer and closer to the goal. But when 
heuristics change suddenly, the strategy is destroyed. Hence 
these algorithms suffer. A solution may be not to use the 
heuristics at all. But if the heuristic function is available, it is 
always better to use it rather than not to use it altogether as is 
the case with other non-heuristic algorithms like breadth-first 
search. 

The algorithm can be applied to the cases where the 
following problems occur in heuristic functions: 

 The heuristic function reaches near goal, but suddenly 

shows that no way is possible to reach goal. 

 The heuristic function keeps fluctuating from the good 

values to bad values making it hard to predict the goal. 

 The heuristic function drops suddenly from very high 

value to low value. 

These conditions can easily be understood from the 
problem of maze solving, if the heuristic function of any 
point (x,y) on the maze denotes its squared distance from the 
goal. We can see that if the search algorithm reaches last but 
one position and then finds itself surrounded by walls, the 
heuristics increase suddenly. Similarly if the solution is a 
series of bad moves followed by another series of good 
moves, the heuristics decrease from high to low. 

Hence in such problems though we may take the heuristic 
function, its performance would be low. The solution is to 
use MNHS which respects all the good, bad and moderate 
values of heuristics, so that no value suffers. 

The basic idea of this algorithm is the use of many 
neurons working one after the other. Each of these takes care 
of high to low values of the heuristic functions. The 
algorithm hence gives respect to all values of the heuristics. 
It may be seen as the way of employing different neurons for 
different types of works. Whichever finds the target is rated 
successful. If you were to find a treasure, it would be 
justified to divide your team at various places, some at high 
probability places, and some at low.  

In all we take α neurons. We have a list of heuristic costs 
each corresponding to node seen but waiting to be processed. 
We divide the cost range into equal α ranges. Each of these 
neurons is given a particular range. Each neuron selects the 
minimum most element of the cost range allotted to it and 



starts searching. At one step of each neuron processes its 
element by searching and expanding the element. This 
process is repeated. 

A. Algorithm 

Step 1: open  ← empty priority queue 

Step 2: closed ← empty list 

Step 3: add a node n in open such that position(n) = 

CurrentPosition, previous(n) = null and f(n), g(n), h(n) are 

as calculated by respective formulas with priority f(n) 

Step 4: while open is not empty 

Step 5:     extract the node n1, n2, n3, n4….. nα from open 

with the priority of n1 as highest and the others equally 

distributed between other α-1 nodes. 

Step 6:     if ni = final position for i=1,2,3,4,5…..α then 

break 

Step 7:     else 

Step 8:             nodes ← nodes from the expanding of node 

ni 

Step 9:             for each node m in nodes 

Step 10:                  if m is already in open list and is equally 

good or better then discard this move 

Step 11:                     if m is already in closed list and is 

equally good or better then discard this move 

Step 12                           delete m from open and closed lists 

Step 13:    make m as new node 

with parent n 

Step 14:    calculate f(m), h(m), 

g(m) 

Step 15:    Add node m to open 

with priority f(m) 

Step 16:   Add n to closed 

Step 17:   Remove n from open 

 
Consider the problem of solving a maze. The problem is 

that we have to move from the initial position to the final 
position in the maze without colliding from walls.  

Refer Figure 1(a) for the problem input. Here 0 
represents the region we cannot move (wall) and 1 represents 
the region we can move (path). Top left is the start point. 
Bottom right is the finish point. The heuristic function is 
taken as the square of the distance of the current point to the 
final point. The solution generated by the MNHS is given in 
figure 1(b). The numbers in results show the order in which 
they were discovered. The number of bottom right corner is 
the number of nodes explored.  

B. MNHS in Path Planning 

The research so far has been using path planning for 
relatively simple paths. Researchers try to place obstacles in 
the way and try to see the behavior of the robots. In practical 
life, it can never be assumed that the path would be so 
simple. The reason is the numerous possibilities of obstacles 
in numerous ways. Consider a robot cleaning a house. There 
would be multiple paths possible with numerous obstacles of 
varying sizes. The robot is supposed to avoid all of them and 
reach the destination. The scalability of these algorithms is 
quite limited in nature. In the presence of complex maps they 

can hence cause problems. An example would be the maze 
like structure where a robot has to find its way out of the 
maze. 

 

1 1 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1 0 1 

1 0 0 0 0 0 0 1 0 1 

1 1 1 1 1 1 0 1 0 1 

1 0 0 0 0 1 0 1 0 1 

1 1 1 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

Figure 1(a): The maze solving problem input 

01 02 04 06 08 09 11 13 15 17 

03 00 00 00 00 00 00 00 00 19 

05 10 26 28 35 40 00 00 00 21 

07 00 00 00 00 00 00 22 00 00 

12 32 00 00 00 00 00 00 00 23 

14 00 00 00 00 00 00 00 00 25 

16 24 38 00 00 00 00 00 00 27 

18 00 00 00 00 00 00 00 00 00 

20 29 30 31 33 34 26 37 39 41 

Figure 1(b): The solution generated by MNHS 

The MNHS algorithm takes care of these problems by 
trying to exploit each and every path possible. This has a 
multiplying effect on the time complexity, but in return is an 
assurance in case of the rapid change in heuristics. This is 
what would come to rescue if by chance the robot reached 
quite near to the goal only to find that there is no way to 
reach it. 

This concept is shown in Figure 2. Here the best path has 
almost reached the goal. At the same time the other paths 
have been expanded to a reasonably good degree that is 
ready to provide a backup. The obstacles have not been 
shown in the figure.  

 

 
 

Figure 2: The MNHS path exploration 



For this problem the historical cost is taken as the 
distance traversed from the source to the current position. 
The heuristic cost is the physical distance of the current 
position to the goal position. The total cost is the sum of both 
the costs. 

IV. EVOLUTIONARY ALGORITHMS 

The primary work of EA is time optimization of the 
entire algorithm. It is known that the A* algorithm may be 
very time consuming when practically applied to complex 
maps [23]. The runtime of the A* algorithm depends a lot 
upon its search space. This is the number of nodes given to 
the algorithm. The MNHS being a modified version of A* 
follows similar trends where the total number of points in the 
map or the number of grids affect the complexity of the 
algorithm. The EA controls the algorithm optimality by 
limiting the number of points in the graph that the MNHS 
has to consider while optimizing the total path length. There 
are three major parts of this algorithm. Each of which is 
discussed in the subsequent sub-sections. 

A. Individual Representation 

One of the foremost tasks in this algorithm is a good 
individual representation. They may be scattered throughout 
the robotic map at various locations. Here we represent an 
individual by a collection of points (Pi) on the robotic map. 
We place a restriction here that the individual size is fixed to 
β. This means that the individual can have a maximum of β 
points in its collection. The complete individual hence 
becomes <P0, P1, P2, P3, …. Pβ, Pβ+1>. Here P0 is the source 
and Pβ+1 is the goal. This collection is given to the MNHS to 
work over the most optimal path out of this collection of 
points. 

Each point is a collection of x and y coordinates and may 
be denoted by (xi, yi). The x axis that we take for this 
problem is the straight line joining the source and the goal. 
The y axis is perpendicular to the x-axis as given in Figure 3. 

Let us suppose that the map is represented in the 
coordinate system X’-Y’ given in Figure 3. Now any point 
needs to lie within the range of (0’,0’) to (m’,n’) so as to lie 
within the map. Here ‘ represents the use of X’-Y’ 
coordinate system. This range needs to be converted into 
equivalent range in the X-Y coordinate system of the 
individual to generate valid points in the robotic map. This is 
done by a rotation of angle ‘a’ in the clockwise direction, 
where ‘a’ is the angle between the two coordinate systems 
given in Figure 3. 

Another important characteristic of the individual 
representation is that the various points in the map are 
always sorted along the X axis. The final path is the path 
traversed by touching the various points in a straight line one 
after the other. Here the source is the first point and goal is 
the last point. Hence we assume that in the final path, the 
robot cannot move backwards. 

The entire length of the chromosome is hence fixed to a 
maximum value of 2 x β. If β is set to 10 and each Pi denotes 
the point (xi,yi) then the genetic individual of this path would 
be represented as <x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 
y8 x9 y9 x10 y10 >. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The coordinate system for individual 
representation and robotic map 

 

B. Conversion to a Graph 

So far we have a collection of β+1 points in the map. But 
the MNHS works on a graph. Hence we need to convert this 
collection of points into a graph so that the MNHS can work 
over the most optimal distance over this pool of points.  

The graph that we give to the MNHS has the collection 
of β+1 points as the vertices. An edge exists between any 
vertex i to any vertex j if the robot can travel from i to j 
without any collision with obstacles. The weight of the edge 
is taken to be the physical distance between the vertices i and 
j. One of the major problems comes in the determination of 
feasibility of the path. To determine the feasibility of the 
path between any two vertices, we travel between the two 
vertices and check for the presence of obstacles. If an 
obstacle exists, the path is considered as infeasible and the 
traversal stops. 

The adjacency matrix representation of graph has been 
used. This is a matrix whose every element aij denotes the 
existence of an edge between the vertex i and j. The element 
stores the weight of the weight if an edge exists, else it stores 
infinity. Sine this is an undirected graph, hence aij = aji. Also 
the diagonal elements are all kept as zeros. 

This graph is given to the MNHS in the fitness function 
of the EA. The first node is specified as the source and the 
last one is specified as the destination of the EA. 

C. Evolutionary Operators 

The EA uses various operators to carry out the task of 
optimization. It uses a rank based fitness method and a 
stochastic selection technique. The two major operators used 
are crossover and mutation. Both these operators have been 
adapted as per the problem. Crossover is point based where 
the new individual gets half the points in the form of (x,y) 
from the first parent and the other half from the second 

X'
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(0,0) 

X
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Y 

Goal 

Source 

(m’,n’) 

(x,y) 
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parent. Scattered crossover is used for this purpose. Similarly 
mutation is point based where the mutation operator 
physically moves points represented by individuals on the 
map where the magnitude of movement depends upon the 
mutation rate. Elite is another operator used to pass on the 
best few individuals from one generation to the other. The 
explanation of the various operators can be found in [24]. 

V. RELATION BETWEEN EA AND MNHS 

We have already stated that the EA does path optimality 
and the MNHS carries forward the task of path optimality. In 
this section we explicitly state this relation that also speaks 
about the algorithm optimality as compared to the other 
simple and hybrid approaches. 

The MNHS algorithm fails to work in the presence of 
large number of nodes due to the large time complexity. 
Since it is not an iterative algorithm, we cannot break its run 
to get the path. This makes it impossible to use MNHS or 
other heuristic algorithms in most real life scenarios. As a 
result we need an algorithm that can reduce the 
dimensionality and select the best nodes for the MNHS to 
perform in finite time. The MNHS can easily work over a 
reduced set of points to give the most optimal paths. 

The EA is an iterative manner of solving problems. One 
of the main disadvantages of the algorithm is that it only tries 
to generate paths based on the fitness of the paths of the 
previous generations. This makes the algorithm make slow 
convergence in path optimality. The solutions come early but 
are not optimal. Hence this algorithm needs the assistance of 
some heuristics that enable it to form good paths and figure 
out good and bad points that make up a path.  

Hence the combination of both these algorithms solves 
the twin problem of path optimality and time. It may be 
easily seen from the algorithm that the mutual contribution 
of the two algorithms is controlled by the factor β. If β is 
very small, the resultant algorithm would be dominated by 
EA. The MNHS would have very little choice between the 
nodes selection. On the other hand if β is very large, the 
algorithm would be primarily MNHS in nature. The 
placement of nodes would lose importance as compared to 
the path formulation between them.  

VI. RESULTS 

The problem of path planning deals with the 
determination of a path which navigates the robot in such a 
way that no collision occurs. In order to solve the problem 
we assume that the input is already available in form of a 
map. Here we assume that the map is available in form of 
grid of size MXN. Each of the cells of this grid contains 0 or 
1. A 0 in such a grid signifies that the region has an obstacle 
present. Similarly a 1 signifies that the region is traversable 
and may be used for the purpose of travelling. The obstacles 
may span across multiple cells. The black regions here 
signify the presence of obstacles. 

It is further assumed that the grid given as input is of 
considerable size. If the grid exceeds a certain threshold of 
size, it would become computationally impossible for the 
algorithm to find a result. Hence, we restrict the size of the 
map according to the computational capability and time 

constraints in whatever real life specific problem is being 
considered. 

The algorithm would generate as its output a path that 
can be used by the robot for the navigation purposes. The 
path may be traversed using any robotic controller. This is 
for the execution of the steps given by the planning 
algorithm. 

In order to test the algorithm, we developed a simulation 
engine of our own. The engine was made keeping in mind 
the practical applicability of the algorithm on the robot. The 
simulation engine took as input the map. This was given in 
the form of an image. The algorithm then executed the 
algorithm to compute the path. The path was shown using 
JAVA Applets. 

We applied various tests to the algorithm in order to 
ensure that the algorithm behaves well in each and every 
condition. In all the cases the map was of size 1000X1000 
and the robot was supposed to move from the top left corner 
to the bottom right corner. The value of α of MNHS was 
fixed as 2. The EA parameters consisted of 125 individuals, 
100 generations, 2 as the elite count, 0.78 crossover rate and 
0.06 mutation rate. The individual size β was kept as 5. All 
simulations were made on a 256 MB RAM and 585 MHz 
processor. All runs took less than 50 seconds with a very 
high convergence of the path length.    

 

Figure 4: The path generated by MNHS for no obstacle. 

 

 

Figure 5: The run for single obstacle in case II 

 

Figure 6: The run for complex obstacles in case III 



 

Figure 7: The second run for complex obstacles in case 

III 

Initially we did not place any obstacle in the path from 
the source to destination. We observed that the algorithm 
traced the path from the source to the destination following a 
straight line path. The results of the algorithm are shown in 
Figure 4. The second case we considered was of a single 
obstacle in the path from the source to destination. The robot 
easily avoided the obstacle and marched towards the goal 
position. The results of the algorithm are shown in Figure 5. 
The last case we presented before the algorithm was to test 
its ability to handle complex inputs. Various complex 
obstacles were placed in the path of the robot from the 
source to destination. The robot again easily avoided the 
obstacle and marched towards the goal position. The results 
of the algorithm are shown in Figure 6 and 7.  

VII. CONCLUSIONS 

In this paper we proposed the use of MNHS and EA to 
solve the problem of robotic path planning. We saw that we 
were able to solve the problem in almost all given scenarios 
well in time. The MNHS proved to be a great algorithm for 
the purpose of optimality of path which is a very important 
parameter for the algorithm. At the same time the optimality 
of the total time of execution was provided by the use of EA. 
The EA gave limited points in the entire map to the MNHS. 
Hence using the two algorithms, we were able to optimize 
both the time and the total path length. This hence proved to 
be a very important algorithm that could solve much of the 
problems present in the earlier techniques of robotic path 
planning.  

A beautiful relation exists between the A* algorithm as 
well as the MNHS. Suppose we want more of path 
optimality. A very natural choice would be to make the 
MNHS dominant in the entire algorithm. Similarly say we 
want more of time optimality. This can be achieved by 
making the EA more dominant in the algorithm. Hence a 
controlling measure must exist between the two algorithms. 
This controlling measure is provided by the use of the EA 
size constant β. Suppose the value of β is very large. Now 
the MNHS would be dominant and vice versa.  

The algorithm further needs to be used in practical life 
scenarios which are more complex than the cases presented 
here. Also the value of α and β was kept constant in the cases 
presented. The determination and setting of the most optimal 
values needs to be studied in the future. The algorithm may 
further be developed for real time dynamic obstacles as well 
which would help in practical implementation of the 

algorithm. This may be done by the inclusion of any 
behavioral robotic controller like he neuro fuzzy controllers.  

 

REFERENCES  

[1] Hutchinson, S. A. and Kak, A. C., "Planning sensing strategies in a 
robot work cell with Multi-sensor capabilities," IEEE Trans. On 
Robotics and Automation, vol.5, no.6, 1989. 

[2] Rich, E. and Knight, K., Artificial Intelligence, McGraw-Hill, New 
York, pp. 29-98, 1991. 

[3] Takahashi, O. and Schilling, R. J., "Motion planning in a plane using 
generalized voronoi diagrams," IEEE Trans. on Robotics and 
Automation, vol.5, no.2, 1989. 

[4] Borenstain, J., Everett, H. R., and Feng, L., Navigating “Mobile 
Robots: Systems and Techniques”, A. K. Peters, Wellesley, 1996 

[5] Matlin, W. Margaret, Cognition, Hault Sounders, printed and 
circulated by Prism books, India, 1996. 

[6] Konar, A. and Pal, S., “Modeling cognition with fuzzy neural nets” In 
Fuzzy Systems Theory: Techniques and Applications, Leondes, C. T., 
Ed., Academic Press, New York, 1999. 

[7] Pagac, D., Nebot, E. M. and Durrant. W., H., “An evidential approach 
to map building for autonomous robots,” IEEE Trans. On Robotics 
and Automation, vol.14, no.2, pp. 623-629, Aug. 1998. 

[8] V. Ayala-Ramirez, A. Perez-Garcia, E J. Montecillo-Puente, R.E. 
Sanchez-Yanez, “Path planning using genetic algorithms for mini-
robotic tasks”, 2004 IEEE International Conference on Systems, Man 
and Cybernetics 

[9] Hem Fkezza-Buet, FrBd6ric Alexandre “Modeling prefrontal 
functions for robot navigation”  

[10] Theodore W. Manikas, Kaveh Ashenayi, and Roger L. Wainwright, 
“Genetic Algorithms for Autonomous Robot Navigation”, IEEE 
Instrumentation & Measurement Magazine December 2007 

[11] Du Xin, Chen Hua-hua, Gu Wei-kang, “Neural network and genetic 
algorithm based global path planning in a static environment”,  
Journal of Zhejiang University SCIENCE 

[12] Zhang Huan-cheng, Zhu Miao-liang, “Self-organized architecture for 
outdoor mobile robot navigation”, Journal of Zhejiang University 
SCIENCE 

[13] Peter Corke, Ron Peterson, Daniela Rus, “Networked Robots: Flying 
Robot Navigation using a Sensor Net”, April 18, 2003 

[14] Cory Quammen, “Evolutionary learning in mobile robot navigation”, 
The ACM Student Magazine 

[15] Yong-Kyun Na and Se-Young Oh, “Hybrid Control for Autonomous 
Mobile Robot Navigation Using Neural Network Based Behavior 
Modules and Environment Classification”, 2003 Kluwer Academic 
Publishers, Manufactured in The Netherlands 

[16] Seyyed Ehsan Mahmoudi, Ali Akhavan Bitaghsir, Behjat 
Forouzandeh and Ali Reza Marandi, “A New Genetic Method for 
Mobile Robot Navigation”, 10th IEEE International Conference on 
Methods and Models in Automation and Robotics, 30 August - 2 
September 2004, Miedzyzdroje, Poland 

[17] Torvald Ersson and Xiaoming Hu, “Path Planning and Navigation of 
Mobile Robots in Unknown Environments” 

[18] László Kiss, Annamária R. Várkonyi-Kóczy, “A Universal Vision-
based Navigation System for Autonomous Indoor Robots” 

[19] Sven Behnke, “Local Multiresolution Path Planning”, Preliminary 
version in Proc. of 7th RoboCup Int. Symposium, Padua, Italy, 2003 

[20] S. Veera Ragavan, and V. Ganapathy, “A Unified Framework for a 
Robust Conflict-Free Robot Navigation”, Proceedings of World 
Academy of Science, Engineering and Technology, Volume 21 
January 2007 ISSN 1307-6884 



[21] Shukla, Anupam & Kala, Rahul; “Multi Neuron Heuristic Search”, 
International Journal of Computer Science and Network Security, 
Vol. 8, No. 6, pp 344-350, June 2008 

[22] Shukla, Anupam; Tiwari, Ritu & Kala, Rahul; “Mobile Robot 
Navigation Control in Moving Obstacle Environment using A* 
Algorithm”, Intelligent Systems Engineering Systems through 
Artificial Neural Networks, ASME Publications, Vol. 18, pp 113-120, 
Nov 2008   

[23] Kala, Rahul; et. al., “Mobile Robot Navigation Control in Moving 
Obstacle Environment using Genetic Algorithm, Artificial Neural 
Networks and A* Algorithm”, Proceedings of the IEEE World 
Congress on Computer Science and Information Engineering (CSIE 
2009), ieeexplore, April 2009, Los Angeles/Anaheim, USA, pp 705-
713 

[24] Mitchell, M; “An Introduction to Genetic Algorithms”, 1996, 
Cambridge, MA: MIT Press.

 


