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InTroDuCTIon

There has been a vast amount of research in 
the use of neural networks for problem solv-
ing. The neural networks are extensively used 
for a variety of problems including biometrics, 
bioinformatics, robotics, and so forth (Shukla, 
Tiwari, & Kala, 2010a). The ease of modelling 
and use makes the neural networks good prob-
lem solving agents. The neural networks carry 
the task of machine learning. Here a training 
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AbSTrACT
The complexity of problems has led to a shift toward the use of modular neural networks in place of traditional 
neural networks. The number of inputs to neural networks must be kept within manageable limits to escape 
from the curse of dimensionality. Attribute division is a novel concept to reduce the problem dimensionality 
without losing information. In this paper, the authors use Genetic Algorithms to determine the optimal distribu-
tion of the parameters to the various modules of the modular neural network. The attribute set is divided into 
the various modules. Each module computes the output using its own list of attributes. The individual results 
are then integrated by an integrator. This framework is used for the diagnosis of breast cancer. Experimental 
results show that optimal distribution strategy exceeds the well-known methods for the diagnosis of the disease.

database is given to the system. This database 
is a source of large amount of information re-
garding patterns, trends, and knowledge about 
the problem domain. The task of the learning 
algorithm is to extract this knowledge and use 
it as per the system knowledge representation. 
In the neural network this knowledge is in the 
form of weights between the various neurons 
and the individual neuron biases. A commonly 
used architecture of the neural networks is the 
Multi-Layer Perceptron. Here the various neu-
rons are arranged in a layered manner, the first 
layer being the input layer and the last being 
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output layer. The input and output layer may be 
separated by a number of hidden layers. Back 
Propagation Algorithm is commonly used for 
training the neural networks. This algorithm 
works over the gradient descent approach for 
fixing the various weights and biases. The back 
propagation algorithm is however likely to get 
struck at some local minima, considering the 
very complex nature of the search space over 
which it operates (Konar, 1999).

The weakness in the various soft comput-
ing paradigms has led to the emergence of the 
field of hybrid soft computing. Here we mix 
two similar or different paradigms so as to 
magnify the advantages of each of these and 
diminish their disadvantages. This coupling 
of individual systems may result in comple-
mentation of the limitations of the systems, 
for an overall enhanced performance. The 
evolutionary neural networks are commonly 
used hybrid systems, where neural modelling 
fuses with evolutionary computation to result 
in good problem solving agents.

The architecture of the neural networks is 
a major criterion that decides the system per-
formance. The traditional neural networks use 
human expertise to design the optimal architec-
ture, which may then be trained by the training 
algorithm. This however is a human-intensive 
task which may hence yield sub-optimal results. 
The training algorithm in turn may get struck at 
some local minima, with very poor exploration 
of the search space. The evolutionary algorithms 
are very strong optimizing agents that optimize 
the given problem in an iterative manner, and 
fix all the values of the parameters so as to 
optimize the final objective (Mitchell, 1999). 
Evolutionary neural networks hence use the 
optimization potential of the evolutionary al-
gorithms for evolving the complete architecture 
of the neural networks, along with the weights 
and biases (Nolfi, Parisi, & Elman, 1990; Yao, 
1999). Many times the evolutionary process 
may be assisted by a local search strategy like 
BPA or simulated annealing to search for local 
minima in the vicinity of the current location of 
the evolutionary individual in the search space 
(Yao, 1993).

Classification is a fundamental problem of 
study. The classification system is given a set of 
features as inputs, and is expected to return the 
class to which the input belongs as the output. 
The classifier is supposed to build the decision 
boundaries in the feature space that separates 
the various classes. Ideally the features must be 
such that the various instances of the classes 
have a high inter-class separation and low intra 
class separation. This makes it very easy for 
the classifier to construct decision boundaries 
across the various classes, separating them 
from each other. Every input attribute in this 
classifier is a dimension in the feature space. 
The additional dimensions usually make the 
task of construction of the decision boundary 
by the classifier easier. Two classes lying very 
close to each other may get separated by the 
addition of some dimension. This however may 
require more training instances, and would 
result in immense increase of computation 
time. The decision boundaries, across various 
dimensions, may become very complex and 
difficult to model and train (Shukla, Tiwari, & 
Kala, 2010b; Kala, Shukla, & Tiwari, 2009). 
Hence the number of inputs to the classifier 
needs to be limited in nature.

Modular Neural Network is advancement 
over the conventional neural networks. Here we 
try to introduce modularity into the structure 
and working of the neural network. This leads 
to the creation of multiple modules that together 
solve the entire problem. The results generated 
by the different modules are integrated using an 
integrator. Each of the modules of the modular 
neural network is a neural network that aids in 
the solution building. These networks can hence 
model very complex problems and give effec-
tive decisions in smaller times (Fu et al., 2001; 
Gruau, 1995; Jenkins & Yuhas, 1993). A related 
concept is ensemble, where the same problem 
is solved by a number of experts. Each of them 
computes the output to the problem which is 
then integrated using an integration mechanism 
(Dietterich, 2000; Hansen & Salamon, 2000; 
Jacobs, et al., 1991).

The immense increase in computation has 
led to automation in the diagnosis of disease. 
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A considerable effort is being given for the use 
of computation and engineering principles in 
the field of medical sciences. This leads to an 
exciting field of Biomedical Engineering. The 
automatic diagnosis of disease helps in the early 
detection of diseases, and hence suitable pre-
ventive measures may be taken. These systems 
may be used to assist the doctors for decision 
making (Bronzino, 2006; Shukla & Tiwari, 
2010a, 2010b). Breast Cancer is an emerging 
problem which has attracted the interests of a 
large number of researchers. A number of di-
agnostic techniques are built for the diagnosis 
of this disease. These systems take the vari-
ous attributes observed in the patient and try 
to predict the presence or absence of disease 
(Breastcancer.org, 2010; Janghel et al., 2009, 
2010; Shukla et al., 2009a, 2009b).

Attribute division is a novel concept where 
we use multiple neural networks for solving the 
problem in place of a single neural network. 
Each of the neural networks is given a part of 
the complete set of attributes. As a result ev-
ery neural network or module gets a problem 
of limited complexity. Each network tries to 
train itself so as to make the best prediction as 
per the attributes given. Each network has a 
limited view of the feature space, comprising 
of limited dimensions. This is unlike the view 
of the complete feature space. Each network 
tries to make the best prediction as per its view. 
The predictions of all the neural networks are 
integrated using an integration mechanism, 
and the final decision is made. Here we try 
to integrate the views of the various modules, 
to optimally construct the global view of the 
complete feature space. As per the working 
guidelines of ensemble, it is known that the 
various modules must all give high performance, 
and must disagree as much as possible (Pedrajas 
& Fyne, 2008). These contradictory condi-
tions, when held together solve the problem 
efficiently. The various modules give diverse 
view to the integrator which makes the final 
decision. The detail not seen by some module 
gets compensated by another module.

In this paper we propose a method of 
deciding the distribution of attributes among 

the various modules of the modular neural 
network. A large set of attributes is given as 
the input, using which a set of modules need 
to be made. An attribute can be given to any 
number of modules or to none at all. The ulti-
mate aim is to make network that gives the best 
performance over the testing database. For this 
reason we penalize the network structure with 
large number of attributes which may give a 
higher training accuracy but a low generality. 
Diversity in attributes is further encouraged.

rElATED worK

A considerable amount of work is done into 
the domain of evolutionary and modular neural 
networks in the past decade. A review of the 
various evolutionary approaches, operators, and 
other concepts behind the evolution of fixed 
and variable architecture neural networks can 
be found in the work of Yao (1999). The use of 
Evolutionary Programming for a behavioural 
evolution of the neural network is found in (Yao, 
1997). Symbiotic Adaptive Neuro-Evolution 
(SANE) is a major development into the field 
(Moriarty, 1997; Moriarty & Miikkulainen, 
1997). This algorithm uses the concept of co-
evolution for carrying the task of optimization of 
the neural network architecture and parameters 
(Potter, 1997; Rosen & Belew, 1996; Stanley 
& Miikkulainen, 2004). Here it is assumed that 
the neural network consists of a single hidden 
layer. A hidden layer may be connected to any 
number of neurons from the input and output 
layer, which is optimized as the algorithm runs. 
The evolution takes place at two levels. The 
first level is the neuron level. Here the genetic 
individual is a neuron connected to some other 
neurons with some weights. The next level 
is the network level. Here the individual is a 
collection of neurons that makes the complete 
neural network. Pedrajas (2003) proposed a 
novel framework of using co-operative evolu-
tion or co-evolution for the task of modular 
neural network evolution. Their solution used 
two levels of evolution. The first level was the 
nodule level. Here the individuals corresponded 
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to the individual neural networks. The next level 
was the network level which tried to figure out 
the best combination of nodules for an effective 
overall recognition. The fitness function used 
in this algorithm encouraged the individuals 
to possess a good overall fitness, as well as 
rewarded them for adding unique character-
istics to the network. The results showed a 
better performance of these networks over the 
conventional approaches.

Fieldsend and Singh (2005) used Multi-ob-
jective optimization to evaluate the evolutionary 
neural network for a set of error functions into a 
pareto front. The use of multiple error functions 
enabled strong check against generalization loss 
or over-fitting. This neural network was further 
extended to use a validation data set to avoid 
over-fitting, and booststrapping to make use 
of a number of small data sets for training and 
validation. The net decision was made using the 
training on validation errors in all these sets. 
Jung and Reggia (2006) present another inter-
esting approach where the users are provided 
with a language specification they can use to tell 
the system about the general architecture of the 
neural network. The architectural parameters to 
be optimized may be explicitly specified. The 
system carries the rest of the evolution as per 
the user set architectural specifications. In this 
manner the human expertise and evolutionary 
optimizing potential interact at user front for the 
generation of optimal neural network. Rivera 
et al. (2007) used co-operative evolution for 
the task of generation of Radial Basis Function 
network. Each individual here was a neuron 
of this network or a radial basis function. The 
impact of the neuron was measured against its 
performance, error and overlapping with the 
other neurons. The final evaluation was done 
using a Fuzzy Rule Based system. This enabled 
the neurons to attain diverse roles, which col-
lectively made an effective network. Cho and 
Shimohara (1998) used Genetic Programming 
for the generation of Modular Neural Network. 
Here the chromosome was framed to model 
the architecture and parameters of the various 
modules of the modular neural network. Dif-

ferent types of modules were used to performed 
different functions.

Boosting is another novel concept applied 
for effective machine learning. Here we assign 
different weights to the different data instances, 
which denote their ease of being learned. The 
more difficult instances have a greater impact 
on the final network error. These weights are 
updated as per the system readings of errors 
(Freund, 1995; Freund & Schapire, 1996). Pe-
drajas (2009) presents an interesting application 
to boosting. In his approach multiple classifiers 
are made. Computation of the boosting weights 
takes place as the system learns. The projection 
of input space to the hidden layer space (outputs 
of the hidden layer) is passed as inputs to next 
classifier.

Division of the entire input set into multiple 
input sets for easier and better recognition is a 
commonly used task. A good use of modular 
neural network can be found in the work of 
Melon and Castilo (2005). Here the authors 
carried out the task of multi-modal biometric 
fusion. Each biometric modality was handled 
separately by a modular neural network, which 
were all integrated using fuzzy integration. 
Each of the biometric identification system 
was a modular neural network consisting of one 
module for each part of the biometric modality. 
Each modality input was broken into three parts, 
each part being performed by a different neural 
network. The parts were also integrated using 
fuzzy integration. A similar concept was applied 
by Kala et al. (2010) for bi-modal biometric 
recognition. Here the entire pool of attribute set 
from both modalities was distributed into four 
recognition neural networks. All outputs were 
integrated using probabilistic sum technique.

METhoDoloGy

The basic motive behind the approach is to de-
vise an optimal distribution of the attributes of 
the problem, into the classifiers. We assume here 
that the number of classifiers is already fixed. 
Let there be n classifiers into the system. Let the 
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complete attribute set be given by <p1, p2, p3, 
...pN>. Here N is the total number of attributes 
in the problem of consideration. It is assumed 
that any classifier may have any number of at-
tributes. Further it is assumed that any attribute 
may be given to any number of classifiers. 
Once a classifier gets the stated attributes, it 
trains itself with the training data set. Training 
algorithm may be specific to the classifier. We 
propose the use of Genetic Algorithm for carry-
ing out this distribution. The Genetic Algorithm 
Framework is discussed. The construction and 
training of the neural network is then presented. 
The fitness evaluation is also given.

Genetic Algorithm

The first task in the implementation of the ge-
netic algorithm is the individual representation 
technique. The individual in our case consists 
of n number of vectors < V1, V2, V3, V4, ... Vn>. 
Each vector Vi contains the set of attributes that 
are given to classifier i. Each set is a collection 
of integers denoting the attributes it is assigned. 
It is natural that the number of attributes may 
vary from 1 to N. Further we assume that the 
various neural networks used would have a 
single hidden layer. This is a valid assumption 
considering the fact that most problems give 
best results when trained and tested with a small 
number of neurons and a single hidden layer. 
The number of neurons in the neural network 
for every module constitutes the structure of the 
module or neural network. Hence every vector 
is appended with the number of neurons present 
in the module. This can be any integer between 
1 and neumax. neumax is the maximum allowable 
number of neurons that is specified by the user. 
Based on the same mechanism an initial popula-
tion is designated. Random attribute numbers 
are assigned to the various vectors. The number 
of attributes in the vectors is itself determined 
randomly. The number of neurons of various 
modules is also assigned randomly.

The next task is the use of genetic opera-
tors to aid in the evolutionary process. For this 
we use a variety of genetic operators. These 
are (i) crossover, (ii) mutation, (iii) elite, (iv) 

add attribute, (v) delete attribute, (vi) mutate 
number of neurons, and (viii) repair.

The crossover operator uses two parents to 
generate two children. The crossover is carried 
for each of the n attribute sets, the results are 
then combined to get the final genetic individual. 
Let the two attribute sets be Vx

j and Vy
j. Here x 

and y are the two parents, and j is the attribute 
set. Let nx

j and ny
j be the number of attributes in 

these sets. The major problem in crossover is the 
difference in the number of attributes in each of 
the attribute sets. For this we first make a pool 
of distinct attributes from both these attribute 
sets Vx

j and Vy
j. The number of attributes in the 

two children are kept as ceil((nx
j and ny

j)/2) and 
floor((nx

j and ny
j)/2). Where ceil(.) is the greatest 

integer greater than function, and floor(.) is the 
greatest integer less than function. These many 
attributes are randomly given to the two children 
using a scattered crossover technique. Every 
attribute from this attribute set is given to the 
first parent with a probability of 0.5, and to the 
other parent with a probability of 0.5. The left 
spaces in the children are filled with random 
attributes, provided they are not currently in 
the possession of the children. The number of 
neurons for the children per module is changed 
using the same phenomenon. If neux

j and neuy
j 

denote the number of neurons of module j of 
the parents x and y, the number of neurons in 
children is given by ceil((neux

j and neuy
j)/2) and 

floor((neux
j and neuy

j)/2).
The mutation operator simply replaces an 

attribute randomly with a new attribute. The 
replacement is governed by the mutation rate 
that follows a normal distribution. Elite passes 
the best individual of a generation directly to 
the next generation. Add attribute selects an 
attribute set of the individual randomly. It then 
adds a new distinct attribute to this attribute set. 
The delete attribute genetic operator performs in 
a similar manner. It however deletes an attribute 
from the available list. The mutate neurons 
selects a module randomly and changes the 
number of neurons in it. The change follows a 
normal distribution.

The repair operator checks the individuals 
and removes any anomalies in them. One of the 
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constraints in the individuals is that the vari-
ous vectors cannot contain the same attribute 
more than once. This is natural since multiple 
occurrence of an input attribute would not be 
useful for the neural network training. Hence the 
repeated attributes are deleted by this operator. 
Further the various attributes are stored in a 
sorted order in their attribute sets. The sorting 
of the attributes is done by this operator. The 
number of neurons must also be within the 
designated limits. Every attribute also needs 
to be within the limited values. The number 
of attributes must be greater between 1 to N.

Modular neural network

The other major task is the formulation of 
modular neural network using the specifications 
of the genetic individual. This would enable 
the computation of the fitness of the genetic 
individual as per previous discussions. Each of 
the modules of the modular neural network is a 
multi-layer perceptron that is trained using back 
propagation algorithm. Each neural network 
gets the designated attributes as represented by 
the genetic individual. The network is supposed 
to output the diagnosis of the disease.

Each individual of the genetic algorithm 
is decoded to make the designated number of 
modules. Each module further has designated 
number of neurons. Each network is trained 
using back propagation algorithm. Only the 
selected attributes are given to the network 
for training, out of all the available attributes. 
Figure 1 shows the general evolutionary and 
neural architecture used in the algorithm. It 
may be easily seen from figure that the entire 
algorithm is based on evolutionary principles 
where Genetic Algorithms carry optimization. 
Each individual, for fitness computation, is 
decoded which results in many modules, each 
being a neural network. All modules are trained 
by the specific attributes represented by the indi-
vidual from training database. Trained modules 
are then used for performance evaluation over 

training database. Integration of results for vari-
ous modules is done by the integrator. Figure 
2 specifically stresses upon the mechanism of 
division of attributes and the further process-
ing with the neural network. The entire set of 
attributes available in the problem is divided 
into a set of modules. Each attribute may be 
given to none, one, or more than one module. 
Each module is a neural network that takes 
the selected attributes as input and produces a 
probability set as output. The integrator sums 
the probabilities recorded by various modules 
and declares the class with maximum probability 
as the winning class.

fitness Evaluation

The last task associated with the use of ge-
netic algorithm is to devise a fitness function. 
The fitness function is an evaluation of the 
performance of the individual. Here we try 
to simultaneously optimize four objectives. 
These are (i) Diagnostic Performance (DP), 
(ii) Left Attributes (LA), (iii) Average Module 
Size (AMS), and (iv) Difference in attributes 
within modules (DA). Diagnostic performance 
is a measure of the number of cases correctly 
diagnosed by the system and is measured as 
given in equation (1)

DP = Correctly Diagnosed Cases / Total  
Number of Cases  (1)

This is a number between 0 and 1.
The Left Attributes (LA) measures the total 

number of attributes that did not go to any of the 
modules. This means that the resultant system 
is deprived of these attributes, which may lead 
to sub-optimal performance. We hence try to 
make this number as small as possible. LA is 
normalized to lie between 0 and 1 by dividing 
by the total number of attributes N.

Average Module Size (AMS) is measured 
as given by equation (2). This is also normal-
ized to lie between 0 and 1 by division by N.
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AMS
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= =
∑

1  (2)

Here ni is the number of attributes in module 
i. n is the total number of modules.

The difference in number of attributes (DA) 
is an indication of the variance in the size of 
the various modules. We keep this number as 
small as possible, so that the different modules 
are similar in size and action. DA is measured 
as given in equation (3).

DA n n
i jj j i

n

i

n
= −

= >= ∑∑ 11 ,
 (3)

The fitness function is a weighted sum of 
all these objectives given by equation (4). The 
signs denote maximization or minimization.

Fit = - α1DP + α2LA + α3AMS + α4DA       (4)

Here α1,α2,α3, and α4 are the multi-objective 
optimization constants.

rESulTS

The discussed model was applied over the 
problem of Breast Cancer diagnosis. Here we 
are given a set of attributes and these needs to 
be classified into malignant or benign. We take 
the breast cancer data from the UCI Machine 
Learning Repository for this purpose (Wolberg, 
Mangasarian, & Aha, 1992). This database 
consists of 30 real valued inputs. These cor-
respond to the following features for each cell 
nucleus: radius (mean of distances from center 
to points on the perimeter), texture (standard 
deviation of gray-scale values), perimeter, area, 
smoothness (local variation in radius lengths), 
compactness (perimeter2 / area - 1.0), concavity 
(severity of concave portions of the contour), 
concave points (number of concave portions 
of the contour), symmetry, fractal dimension 

Figure 1. The general algorithm framework
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(“coastline approximation” - 1). The entire 
data set consists of a total of 357 benign and 
212 malignant cases, totaling to 569 instances 
in the database.

JAVA was used as the simulation platform. 
The evolutionary algorithm used for the same 
was coded in the same platform. Back Propaga-
tion algorithm was taken as a library from (Cole, 
2009). The various modules of evolutionary 
algorithm, individual, fitness evaluation, data 
manager, and neural networks were made and 
integrated. The system had three modules that 
were kept constant throughout the simulation. 
The initial population was initially generated 
randomly, that was later optimized using the 
evolutionary algorithm.

The entire data set is broken for both train-
ing as well as testing data sets. Approximately 
70% of the instances are randomly chosen for 
training and the rest 30% and kept for testing. 
Each data item gets designated to training or 
testing datasets. The evolutionary parameters 
used constitute of population size of 25 and 
stopping criterion of 25 generations. At any 
generation 40% individuals came from cross-

over, 20% from mutation, 5% from elite, 10% 
from mutate neuron, 10% from add attribute, 
and 10% from delete attribute. The maximum 
number of neurons in any module was limited 
to 20. The four multi-objective weights had a 
value of 0.4, 0.4, 0.1, and 0.1. Back Propagation 
Algorithm was used as a local search strategy. 
Learning rate was fixed to 0.1, and momentum 
was kept as 0.7. The training was carried for 
1000 generations. On training and testing the 
algorithm gave an accuracy of 98.63% for the 
testing data and 98.10%for the testing data. 
The algorithm took approximately 10 hours 
for the evolution. The results of the algorithm 
are summarized in Table 1.

We further study the convergence of the 
algorithm by plotting the fitness of the best 
individual of the population along with time. 
This is given in Figure 3. The figure clearly 
shows a large improvement in the performance 
value in the initial few generations. This im-
provement however becomes small as the 
generations increase. Towards the later stages, 
the algorithm converges to the optimal value. 
It may be noted that the database taken had 

Figure 2. Attribute division in the modules
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limited instances, and hence the training ac-
curacy can only increase by some discrete 
amounts, corresponding to the increase in ac-
curacy due to a single data instance.

The high accuracies achieved in the use of 
proposed algorithm encourage a high usage of 
the algorithm for medical diagnosis. In order 
to fully test the performance of the algorithm, 
we compare the proposed algorithm with a 
number of algorithms available in literature. In 
all these algorithms the data was broken down 
into training and testing data sets. The training 
data set was used for network tuning the network 

parameters. The testing dataset was used for 
the testing purposes.

The first method applied was the con-
ventional neural network model Multi-Layer 
Perceptron trained with Back Propagation 
Algorithm. Here MATLAB was used for the 
simulation purposes. The network had 1 hid-
den layer with 18 neurons. Learning rate was 
fixed to be 0.05. Momentum was fixed to 0.7. 
The network was trained for 3500 epochs. The 
resultant network gave a training accuracy of 
97.01% and a testing accuracy of 94.61%.

Table 1. Analysis of the results of the algorithm 

S.	No. Property Value

1. Mean Training Accuracy 98.10%

2. Mean Testing Accuracy 98.63%

3. Approx. Training Time 10 hours

4. Mean Correctly Identified Instances (Training) 391

5. Mean Incorrectly Identified Instances (Training) 7

6. Mean Correctly Identified Instances (Testing) 168

7. Mean Incorrectly Identified Instances (Testing) 3

Figure 3. Performance of best networks against generations
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The other model trained was a fixed ar-
chitecture evolutionary neural network. Here 
the neural network architecture was the same 
as discussed in the previous approach. The 
weights and biases were optimized using genetic 
algorithm. The genetic algorithm consisted of 
10 individuals, each trained in 15 generations. 
The various weights and biases could vary from 
-2 to 2. Rank based scaling with stochastic 
uniform selection was used. Elite count was 
kept as 2. Crossover rate was 0.8. Gaussian 
mutation with a spread and scale of 1 each was 
used. The genetic algorithm used back propaga-
tion algorithm as the local search strategy. The 
BPA had a learning rate of 0.05, and momentum 
of 1. Training was carried for 30 epochs. The 
algorithm had a training accuracy of 93.92% 
and testing accuracy of 95.40%.

The next algorithm we use to test the ac-
curacy with is the variable architecture Evo-
lutionary Neural Network. Here we follow a 
connectionist approach. The neural network is 
assumed to be consisting of one hidden layer. 
In place of an all-connected architecture, we 
assume that only some connections are allowed 
from the input layer to hidden layer and hidden 
layer to output layer. The information regard-
ing the connections is stored into the genetic 
individual. The various parameters used in this 
approach are the same as the ones used in the 
fixed architecture neural network. Extra con-
nections were penalized by assigning a penalty 
of 0.01 per connection. The hidden layer could 
have a maximum of 30 neurons. The accuracy 
in this case was 97.01% for the training data 
and 95.21% for testing data.

The next approach tried to test the accuracy 
of the algorithm was ensemble. Here we made 
3 experts, each being a neural network with 
similar architecture as discussed in the previous 
approaches. These three neural networks gave 
their probability vectors corresponding to the 
various classes as outputs. A probabilistic sum 
of these vectors was taken, to get the final output 
vector. The winning class was determined from 
this vector. On training and testing, the system 
gave an accuracy of 97.98% on the training data 
and 95.95% on the testing data.

The other method applied for testing the 
accuracy of the algorithm was modular neural 
network, where the complete feature space was 
partitioned into three modules. Each of these 
modules was given a separate neural network for 
training. The architecture of the neural network 
was the same as discussed earlier. After train-
ing and testing, the system gave an accuracy 
of 96.49% on the training data set and 95.08% 
on the testing data set.

The next method of application was a ran-
dom attribute division using Back Propagation 
Algorithm. Here we try to control the curse 
of dimensionality by using multiple neural 
networks in a modular manner. Three modules 
were made. Every attribute was given randomly 
to two of the three modules. The three modules 
were trained and tested against the respective 
data sets. On simulation, the training accuracy 
was found to be 97.19% and testing accuracy 
was found to be 96.03%.

The various algorithm results have been 
summarized in Table 2.

From Table 2, it is clear that the proposed 
algorithm gave the best generalization and 
testing accuracy as compared to all the methods 
presented. Hence using this approach we have 
been successful in removing the adverse effects 
of curse of dimensionality in an effective man-
ner using an evolutionary approach. The high 
recognition score illustrates an effective diag-
nostic system.

ConCluSIon

Curse of dimensionality is a major problem 
that the neural networks face. Modularity is a 
welcome step to remove the curse of dimension-
ality problem with the least loss of information. 
One of the primary ways of implementation 
of modularity is by attribute division. In this 
paper we used genetic algorithms for devising 
an effective division of attributes amongst the 
various modules of the modular neural net-
work. The system so formed tried to make as 
effective modules as possible, with limited size 
and limited number of attributes. The overall 
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modular neural network used these modules 
for the decision making. Each module was a 
multi-layer perceptron which was trained us-
ing back propagation algorithm. The modules 
returned the probabilities of the occurrence of 
the various classes, which was combined using 
an integrator using sum rule. This made the 
final decision. The genetic algorithm not only 
worked for formulating the effective attribute 
division strategy, but also evolved the optimal 
neural network architecture.

This algorithm was applied to the problem 
of diagnosis of Breast Cancer. The attributes 
needed to be divided into a set of three modules. 
On training and testing, the resultant system 
recorded an accuracy of 98.10% on the training 
data and 98.63% on the testing data. The per-
formance of the algorithm was compared with 
a number of algorithms known in literature. We 
observed that the proposed algorithm gave the 
best performance in terms of both the training 
and testing data. This shows the high diagnostic 
capability of the network. Hence we have been 
able to remove the problem of dimensionality 
from the conventional neural network to a good 
extent by working over effective modularity.

The present algorithm is used over a single 
database from biomedical engineering. The 
algorithm may be further extended to more 
databases from diverse applications. This would 
enable use of the algorithm in different fields. 
Time complexity is another major problem as-
sociated with the algorithm. Effective models 
may be built to control execution time. This 

would enable an even better optimization. The 
approach is primarily used using the genetic 
algorithm with multi-layer perceptron model. 
More combinations of neural and genetic models 
may be tried for better perforce. All this may 
be done in future.
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