
January-March 2011, Vol. 4, No. 1

Journal of InformatIon
technology research

	 Special	Issue	on	Medical	Diagnosis	Systems

	 Guest Editorial	Preface

i	 Medical	Diagnosis	Systems	
	 Alejandro Rodríguez González, Universidad Carlos III de Madrid, Spain
 Miguel A. Mayer, Universitat Pompeu Fabra of Barcelona, Spain

	 Research	Articles
1	 The	Consistency	of	the	Medical	Expert	System	CADIAG-2:	A	Probabilistic	Approach
 Pavel Klinov, The University of Manchester, UK
 Bijan Parsia, The University of Manchester, UK
 David Picado Muiño, Institut für Diskrete Mathematik und Geometrie, Austria
	
21	 Development	of	a	Knowledge	Based	System	for	an	Intensive	Care	Environment	
	 Using	Ontologies
 Ana Torres Morgade, University of A Coruña, Spain
 Marcos Martínez-Romero, University of A Coruña, Spain
 José M. Vázquez-Naya, University of A Coruña, Spain
 Miguel Pereira Loureiro, Meixoeiro Hospital of Vigo, Spain
 Ángel González Albo, University of A Coruña, Spain
 Javier Pereira Loureiro, University of A Coruña, Spain

34	 Breast	Cancer	Diagnosis	Using	Optimized	Attribute	Division	in	Modular	
	 Neural	Networks
 Rahul Kala, Indian Institute of Information Technology and Management Gwalior, India
 Anupam Shukla, Indian Institute of Information Technology and Management Gwalior, India
 Ritu Tiwari, Indian Institute of Information Technology and Management Gwalior, India

48	 DISMON:	Using	Social	Web	 and	Semantic	Technologies	 to	Monitor	Diseases	 in	
Limited	Environments

 Ángel Lagares-Lemos, Universidad Carlos III de Madrid, Spain
 Miguel Lagares-Lemos, Universidad Carlos III de Madrid, Spain
 Ricardo Colomo-Palacios, Universidad Carlos III de Madrid, Spain
 Ángel García-Crespo, Universidad Carlos III de Madrid, Spain
 Juan M. Gómez-Berbís, Universidad Carlos III de Madrid, Spain

table of Contents

34 Journal of Information Technology Research, 4(1), 34-47, January-March 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Attribute Division, Biomedical Engineering, Breast Cancer Diagnosis, Classification, Curse
of Dimensionality, Diagnostic Technologies, Evolutionary Neural Networks, Modular Neural
Networks

InTroDuCTIon

There has been a vast amount of research in
the use of neural networks for problem solv-
ing. The neural networks are extensively used
for a variety of problems including biometrics,
bioinformatics, robotics, and so forth (Shukla,
Tiwari, & Kala, 2010a). The ease of modelling
and use makes the neural networks good prob-
lem solving agents. The neural networks carry
the task of machine learning. Here a training

breast Cancer Diagnosis using
optimized Attribute Division
in Modular neural networks

Rahul Kala, Indian Institute of Information Technology and Management Gwalior, India

Anupam Shukla, Indian Institute of Information Technology and Management Gwalior, India

Ritu Tiwari, Indian Institute of Information Technology and Management Gwalior, India

AbSTrACT
The complexity of problems has led to a shift toward the use of modular neural networks in place of traditional
neural networks. The number of inputs to neural networks must be kept within manageable limits to escape
from the curse of dimensionality. Attribute division is a novel concept to reduce the problem dimensionality
without losing information. In this paper, the authors use Genetic Algorithms to determine the optimal distribu-
tion of the parameters to the various modules of the modular neural network. The attribute set is divided into
the various modules. Each module computes the output using its own list of attributes. The individual results
are then integrated by an integrator. This framework is used for the diagnosis of breast cancer. Experimental
results show that optimal distribution strategy exceeds the well-known methods for the diagnosis of the disease.

database is given to the system. This database
is a source of large amount of information re-
garding patterns, trends, and knowledge about
the problem domain. The task of the learning
algorithm is to extract this knowledge and use
it as per the system knowledge representation.
In the neural network this knowledge is in the
form of weights between the various neurons
and the individual neuron biases. A commonly
used architecture of the neural networks is the
Multi-Layer Perceptron. Here the various neu-
rons are arranged in a layered manner, the first
layer being the input layer and the last being

DOI: 10.4018/jitr.2011010103

Journal of Information Technology Research, 4(1), 34-47, January-March 2011 35

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

output layer. The input and output layer may be
separated by a number of hidden layers. Back
Propagation Algorithm is commonly used for
training the neural networks. This algorithm
works over the gradient descent approach for
fixing the various weights and biases. The back
propagation algorithm is however likely to get
struck at some local minima, considering the
very complex nature of the search space over
which it operates (Konar, 1999).

The weakness in the various soft comput-
ing paradigms has led to the emergence of the
field of hybrid soft computing. Here we mix
two similar or different paradigms so as to
magnify the advantages of each of these and
diminish their disadvantages. This coupling
of individual systems may result in comple-
mentation of the limitations of the systems,
for an overall enhanced performance. The
evolutionary neural networks are commonly
used hybrid systems, where neural modelling
fuses with evolutionary computation to result
in good problem solving agents.

The architecture of the neural networks is
a major criterion that decides the system per-
formance. The traditional neural networks use
human expertise to design the optimal architec-
ture, which may then be trained by the training
algorithm. This however is a human-intensive
task which may hence yield sub-optimal results.
The training algorithm in turn may get struck at
some local minima, with very poor exploration
of the search space. The evolutionary algorithms
are very strong optimizing agents that optimize
the given problem in an iterative manner, and
fix all the values of the parameters so as to
optimize the final objective (Mitchell, 1999).
Evolutionary neural networks hence use the
optimization potential of the evolutionary al-
gorithms for evolving the complete architecture
of the neural networks, along with the weights
and biases (Nolfi, Parisi, & Elman, 1990; Yao,
1999). Many times the evolutionary process
may be assisted by a local search strategy like
BPA or simulated annealing to search for local
minima in the vicinity of the current location of
the evolutionary individual in the search space
(Yao, 1993).

Classification is a fundamental problem of
study. The classification system is given a set of
features as inputs, and is expected to return the
class to which the input belongs as the output.
The classifier is supposed to build the decision
boundaries in the feature space that separates
the various classes. Ideally the features must be
such that the various instances of the classes
have a high inter-class separation and low intra
class separation. This makes it very easy for
the classifier to construct decision boundaries
across the various classes, separating them
from each other. Every input attribute in this
classifier is a dimension in the feature space.
The additional dimensions usually make the
task of construction of the decision boundary
by the classifier easier. Two classes lying very
close to each other may get separated by the
addition of some dimension. This however may
require more training instances, and would
result in immense increase of computation
time. The decision boundaries, across various
dimensions, may become very complex and
difficult to model and train (Shukla, Tiwari, &
Kala, 2010b; Kala, Shukla, & Tiwari, 2009).
Hence the number of inputs to the classifier
needs to be limited in nature.

Modular Neural Network is advancement
over the conventional neural networks. Here we
try to introduce modularity into the structure
and working of the neural network. This leads
to the creation of multiple modules that together
solve the entire problem. The results generated
by the different modules are integrated using an
integrator. Each of the modules of the modular
neural network is a neural network that aids in
the solution building. These networks can hence
model very complex problems and give effec-
tive decisions in smaller times (Fu et al., 2001;
Gruau, 1995; Jenkins & Yuhas, 1993). A related
concept is ensemble, where the same problem
is solved by a number of experts. Each of them
computes the output to the problem which is
then integrated using an integration mechanism
(Dietterich, 2000; Hansen & Salamon, 2000;
Jacobs, et al., 1991).

The immense increase in computation has
led to automation in the diagnosis of disease.

36 Journal of Information Technology Research, 4(1), 34-47, January-March 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

A considerable effort is being given for the use
of computation and engineering principles in
the field of medical sciences. This leads to an
exciting field of Biomedical Engineering. The
automatic diagnosis of disease helps in the early
detection of diseases, and hence suitable pre-
ventive measures may be taken. These systems
may be used to assist the doctors for decision
making (Bronzino, 2006; Shukla & Tiwari,
2010a, 2010b). Breast Cancer is an emerging
problem which has attracted the interests of a
large number of researchers. A number of di-
agnostic techniques are built for the diagnosis
of this disease. These systems take the vari-
ous attributes observed in the patient and try
to predict the presence or absence of disease
(Breastcancer.org, 2010; Janghel et al., 2009,
2010; Shukla et al., 2009a, 2009b).

Attribute division is a novel concept where
we use multiple neural networks for solving the
problem in place of a single neural network.
Each of the neural networks is given a part of
the complete set of attributes. As a result ev-
ery neural network or module gets a problem
of limited complexity. Each network tries to
train itself so as to make the best prediction as
per the attributes given. Each network has a
limited view of the feature space, comprising
of limited dimensions. This is unlike the view
of the complete feature space. Each network
tries to make the best prediction as per its view.
The predictions of all the neural networks are
integrated using an integration mechanism,
and the final decision is made. Here we try
to integrate the views of the various modules,
to optimally construct the global view of the
complete feature space. As per the working
guidelines of ensemble, it is known that the
various modules must all give high performance,
and must disagree as much as possible (Pedrajas
& Fyne, 2008). These contradictory condi-
tions, when held together solve the problem
efficiently. The various modules give diverse
view to the integrator which makes the final
decision. The detail not seen by some module
gets compensated by another module.

In this paper we propose a method of
deciding the distribution of attributes among

the various modules of the modular neural
network. A large set of attributes is given as
the input, using which a set of modules need
to be made. An attribute can be given to any
number of modules or to none at all. The ulti-
mate aim is to make network that gives the best
performance over the testing database. For this
reason we penalize the network structure with
large number of attributes which may give a
higher training accuracy but a low generality.
Diversity in attributes is further encouraged.

rElATED worK

A considerable amount of work is done into
the domain of evolutionary and modular neural
networks in the past decade. A review of the
various evolutionary approaches, operators, and
other concepts behind the evolution of fixed
and variable architecture neural networks can
be found in the work of Yao (1999). The use of
Evolutionary Programming for a behavioural
evolution of the neural network is found in (Yao,
1997). Symbiotic Adaptive Neuro-Evolution
(SANE) is a major development into the field
(Moriarty, 1997; Moriarty & Miikkulainen,
1997). This algorithm uses the concept of co-
evolution for carrying the task of optimization of
the neural network architecture and parameters
(Potter, 1997; Rosen & Belew, 1996; Stanley
& Miikkulainen, 2004). Here it is assumed that
the neural network consists of a single hidden
layer. A hidden layer may be connected to any
number of neurons from the input and output
layer, which is optimized as the algorithm runs.
The evolution takes place at two levels. The
first level is the neuron level. Here the genetic
individual is a neuron connected to some other
neurons with some weights. The next level
is the network level. Here the individual is a
collection of neurons that makes the complete
neural network. Pedrajas (2003) proposed a
novel framework of using co-operative evolu-
tion or co-evolution for the task of modular
neural network evolution. Their solution used
two levels of evolution. The first level was the
nodule level. Here the individuals corresponded

Journal of Information Technology Research, 4(1), 34-47, January-March 2011 37

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

to the individual neural networks. The next level
was the network level which tried to figure out
the best combination of nodules for an effective
overall recognition. The fitness function used
in this algorithm encouraged the individuals
to possess a good overall fitness, as well as
rewarded them for adding unique character-
istics to the network. The results showed a
better performance of these networks over the
conventional approaches.

Fieldsend and Singh (2005) used Multi-ob-
jective optimization to evaluate the evolutionary
neural network for a set of error functions into a
pareto front. The use of multiple error functions
enabled strong check against generalization loss
or over-fitting. This neural network was further
extended to use a validation data set to avoid
over-fitting, and booststrapping to make use
of a number of small data sets for training and
validation. The net decision was made using the
training on validation errors in all these sets.
Jung and Reggia (2006) present another inter-
esting approach where the users are provided
with a language specification they can use to tell
the system about the general architecture of the
neural network. The architectural parameters to
be optimized may be explicitly specified. The
system carries the rest of the evolution as per
the user set architectural specifications. In this
manner the human expertise and evolutionary
optimizing potential interact at user front for the
generation of optimal neural network. Rivera
et al. (2007) used co-operative evolution for
the task of generation of Radial Basis Function
network. Each individual here was a neuron
of this network or a radial basis function. The
impact of the neuron was measured against its
performance, error and overlapping with the
other neurons. The final evaluation was done
using a Fuzzy Rule Based system. This enabled
the neurons to attain diverse roles, which col-
lectively made an effective network. Cho and
Shimohara (1998) used Genetic Programming
for the generation of Modular Neural Network.
Here the chromosome was framed to model
the architecture and parameters of the various
modules of the modular neural network. Dif-

ferent types of modules were used to performed
different functions.

Boosting is another novel concept applied
for effective machine learning. Here we assign
different weights to the different data instances,
which denote their ease of being learned. The
more difficult instances have a greater impact
on the final network error. These weights are
updated as per the system readings of errors
(Freund, 1995; Freund & Schapire, 1996). Pe-
drajas (2009) presents an interesting application
to boosting. In his approach multiple classifiers
are made. Computation of the boosting weights
takes place as the system learns. The projection
of input space to the hidden layer space (outputs
of the hidden layer) is passed as inputs to next
classifier.

Division of the entire input set into multiple
input sets for easier and better recognition is a
commonly used task. A good use of modular
neural network can be found in the work of
Melon and Castilo (2005). Here the authors
carried out the task of multi-modal biometric
fusion. Each biometric modality was handled
separately by a modular neural network, which
were all integrated using fuzzy integration.
Each of the biometric identification system
was a modular neural network consisting of one
module for each part of the biometric modality.
Each modality input was broken into three parts,
each part being performed by a different neural
network. The parts were also integrated using
fuzzy integration. A similar concept was applied
by Kala et al. (2010) for bi-modal biometric
recognition. Here the entire pool of attribute set
from both modalities was distributed into four
recognition neural networks. All outputs were
integrated using probabilistic sum technique.

METhoDoloGy

The basic motive behind the approach is to de-
vise an optimal distribution of the attributes of
the problem, into the classifiers. We assume here
that the number of classifiers is already fixed.
Let there be n classifiers into the system. Let the

38 Journal of Information Technology Research, 4(1), 34-47, January-March 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

complete attribute set be given by <p1, p2, p3,
...pN>. Here N is the total number of attributes
in the problem of consideration. It is assumed
that any classifier may have any number of at-
tributes. Further it is assumed that any attribute
may be given to any number of classifiers.
Once a classifier gets the stated attributes, it
trains itself with the training data set. Training
algorithm may be specific to the classifier. We
propose the use of Genetic Algorithm for carry-
ing out this distribution. The Genetic Algorithm
Framework is discussed. The construction and
training of the neural network is then presented.
The fitness evaluation is also given.

Genetic Algorithm

The first task in the implementation of the ge-
netic algorithm is the individual representation
technique. The individual in our case consists
of n number of vectors < V1, V2, V3, V4, ... Vn>.
Each vector Vi contains the set of attributes that
are given to classifier i. Each set is a collection
of integers denoting the attributes it is assigned.
It is natural that the number of attributes may
vary from 1 to N. Further we assume that the
various neural networks used would have a
single hidden layer. This is a valid assumption
considering the fact that most problems give
best results when trained and tested with a small
number of neurons and a single hidden layer.
The number of neurons in the neural network
for every module constitutes the structure of the
module or neural network. Hence every vector
is appended with the number of neurons present
in the module. This can be any integer between
1 and neumax. neumax is the maximum allowable
number of neurons that is specified by the user.
Based on the same mechanism an initial popula-
tion is designated. Random attribute numbers
are assigned to the various vectors. The number
of attributes in the vectors is itself determined
randomly. The number of neurons of various
modules is also assigned randomly.

The next task is the use of genetic opera-
tors to aid in the evolutionary process. For this
we use a variety of genetic operators. These
are (i) crossover, (ii) mutation, (iii) elite, (iv)

add attribute, (v) delete attribute, (vi) mutate
number of neurons, and (viii) repair.

The crossover operator uses two parents to
generate two children. The crossover is carried
for each of the n attribute sets, the results are
then combined to get the final genetic individual.
Let the two attribute sets be Vx

j and Vy
j. Here x

and y are the two parents, and j is the attribute
set. Let nx

j and ny
j be the number of attributes in

these sets. The major problem in crossover is the
difference in the number of attributes in each of
the attribute sets. For this we first make a pool
of distinct attributes from both these attribute
sets Vx

j and Vy
j. The number of attributes in the

two children are kept as ceil((nx
j and ny

j)/2) and
floor((nx

j and ny
j)/2). Where ceil(.) is the greatest

integer greater than function, and floor(.) is the
greatest integer less than function. These many
attributes are randomly given to the two children
using a scattered crossover technique. Every
attribute from this attribute set is given to the
first parent with a probability of 0.5, and to the
other parent with a probability of 0.5. The left
spaces in the children are filled with random
attributes, provided they are not currently in
the possession of the children. The number of
neurons for the children per module is changed
using the same phenomenon. If neux

j and neuy
j

denote the number of neurons of module j of
the parents x and y, the number of neurons in
children is given by ceil((neux

j and neuy
j)/2) and

floor((neux
j and neuy

j)/2).
The mutation operator simply replaces an

attribute randomly with a new attribute. The
replacement is governed by the mutation rate
that follows a normal distribution. Elite passes
the best individual of a generation directly to
the next generation. Add attribute selects an
attribute set of the individual randomly. It then
adds a new distinct attribute to this attribute set.
The delete attribute genetic operator performs in
a similar manner. It however deletes an attribute
from the available list. The mutate neurons
selects a module randomly and changes the
number of neurons in it. The change follows a
normal distribution.

The repair operator checks the individuals
and removes any anomalies in them. One of the

Journal of Information Technology Research, 4(1), 34-47, January-March 2011 39

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

constraints in the individuals is that the vari-
ous vectors cannot contain the same attribute
more than once. This is natural since multiple
occurrence of an input attribute would not be
useful for the neural network training. Hence the
repeated attributes are deleted by this operator.
Further the various attributes are stored in a
sorted order in their attribute sets. The sorting
of the attributes is done by this operator. The
number of neurons must also be within the
designated limits. Every attribute also needs
to be within the limited values. The number
of attributes must be greater between 1 to N.

Modular neural network

The other major task is the formulation of
modular neural network using the specifications
of the genetic individual. This would enable
the computation of the fitness of the genetic
individual as per previous discussions. Each of
the modules of the modular neural network is a
multi-layer perceptron that is trained using back
propagation algorithm. Each neural network
gets the designated attributes as represented by
the genetic individual. The network is supposed
to output the diagnosis of the disease.

Each individual of the genetic algorithm
is decoded to make the designated number of
modules. Each module further has designated
number of neurons. Each network is trained
using back propagation algorithm. Only the
selected attributes are given to the network
for training, out of all the available attributes.
Figure 1 shows the general evolutionary and
neural architecture used in the algorithm. It
may be easily seen from figure that the entire
algorithm is based on evolutionary principles
where Genetic Algorithms carry optimization.
Each individual, for fitness computation, is
decoded which results in many modules, each
being a neural network. All modules are trained
by the specific attributes represented by the indi-
vidual from training database. Trained modules
are then used for performance evaluation over

training database. Integration of results for vari-
ous modules is done by the integrator. Figure
2 specifically stresses upon the mechanism of
division of attributes and the further process-
ing with the neural network. The entire set of
attributes available in the problem is divided
into a set of modules. Each attribute may be
given to none, one, or more than one module.
Each module is a neural network that takes
the selected attributes as input and produces a
probability set as output. The integrator sums
the probabilities recorded by various modules
and declares the class with maximum probability
as the winning class.

fitness Evaluation

The last task associated with the use of ge-
netic algorithm is to devise a fitness function.
The fitness function is an evaluation of the
performance of the individual. Here we try
to simultaneously optimize four objectives.
These are (i) Diagnostic Performance (DP),
(ii) Left Attributes (LA), (iii) Average Module
Size (AMS), and (iv) Difference in attributes
within modules (DA). Diagnostic performance
is a measure of the number of cases correctly
diagnosed by the system and is measured as
given in equation (1)

DP = Correctly Diagnosed Cases / Total
Number of Cases (1)

This is a number between 0 and 1.
The Left Attributes (LA) measures the total

number of attributes that did not go to any of the
modules. This means that the resultant system
is deprived of these attributes, which may lead
to sub-optimal performance. We hence try to
make this number as small as possible. LA is
normalized to lie between 0 and 1 by dividing
by the total number of attributes N.

Average Module Size (AMS) is measured
as given by equation (2). This is also normal-
ized to lie between 0 and 1 by division by N.

40 Journal of Information Technology Research, 4(1), 34-47, January-March 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

AMS
n

n

i
i

n

= =
∑

1 (2)

Here ni is the number of attributes in module
i. n is the total number of modules.

The difference in number of attributes (DA)
is an indication of the variance in the size of
the various modules. We keep this number as
small as possible, so that the different modules
are similar in size and action. DA is measured
as given in equation (3).

DA n n
i jj j i

n

i

n
= −

= >= ∑∑ 11 ,
 (3)

The fitness function is a weighted sum of
all these objectives given by equation (4). The
signs denote maximization or minimization.

Fit = - α1DP + α2LA + α3AMS + α4DA (4)

Here α1,α2,α3, and α4 are the multi-objective
optimization constants.

rESulTS

The discussed model was applied over the
problem of Breast Cancer diagnosis. Here we
are given a set of attributes and these needs to
be classified into malignant or benign. We take
the breast cancer data from the UCI Machine
Learning Repository for this purpose (Wolberg,
Mangasarian, & Aha, 1992). This database
consists of 30 real valued inputs. These cor-
respond to the following features for each cell
nucleus: radius (mean of distances from center
to points on the perimeter), texture (standard
deviation of gray-scale values), perimeter, area,
smoothness (local variation in radius lengths),
compactness (perimeter2 / area - 1.0), concavity
(severity of concave portions of the contour),
concave points (number of concave portions
of the contour), symmetry, fractal dimension

Figure 1. The general algorithm framework

Journal of Information Technology Research, 4(1), 34-47, January-March 2011 41

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(“coastline approximation” - 1). The entire
data set consists of a total of 357 benign and
212 malignant cases, totaling to 569 instances
in the database.

JAVA was used as the simulation platform.
The evolutionary algorithm used for the same
was coded in the same platform. Back Propaga-
tion algorithm was taken as a library from (Cole,
2009). The various modules of evolutionary
algorithm, individual, fitness evaluation, data
manager, and neural networks were made and
integrated. The system had three modules that
were kept constant throughout the simulation.
The initial population was initially generated
randomly, that was later optimized using the
evolutionary algorithm.

The entire data set is broken for both train-
ing as well as testing data sets. Approximately
70% of the instances are randomly chosen for
training and the rest 30% and kept for testing.
Each data item gets designated to training or
testing datasets. The evolutionary parameters
used constitute of population size of 25 and
stopping criterion of 25 generations. At any
generation 40% individuals came from cross-

over, 20% from mutation, 5% from elite, 10%
from mutate neuron, 10% from add attribute,
and 10% from delete attribute. The maximum
number of neurons in any module was limited
to 20. The four multi-objective weights had a
value of 0.4, 0.4, 0.1, and 0.1. Back Propagation
Algorithm was used as a local search strategy.
Learning rate was fixed to 0.1, and momentum
was kept as 0.7. The training was carried for
1000 generations. On training and testing the
algorithm gave an accuracy of 98.63% for the
testing data and 98.10%for the testing data.
The algorithm took approximately 10 hours
for the evolution. The results of the algorithm
are summarized in Table 1.

We further study the convergence of the
algorithm by plotting the fitness of the best
individual of the population along with time.
This is given in Figure 3. The figure clearly
shows a large improvement in the performance
value in the initial few generations. This im-
provement however becomes small as the
generations increase. Towards the later stages,
the algorithm converges to the optimal value.
It may be noted that the database taken had

Figure 2. Attribute division in the modules

42 Journal of Information Technology Research, 4(1), 34-47, January-March 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

limited instances, and hence the training ac-
curacy can only increase by some discrete
amounts, corresponding to the increase in ac-
curacy due to a single data instance.

The high accuracies achieved in the use of
proposed algorithm encourage a high usage of
the algorithm for medical diagnosis. In order
to fully test the performance of the algorithm,
we compare the proposed algorithm with a
number of algorithms available in literature. In
all these algorithms the data was broken down
into training and testing data sets. The training
data set was used for network tuning the network

parameters. The testing dataset was used for
the testing purposes.

The first method applied was the con-
ventional neural network model Multi-Layer
Perceptron trained with Back Propagation
Algorithm. Here MATLAB was used for the
simulation purposes. The network had 1 hid-
den layer with 18 neurons. Learning rate was
fixed to be 0.05. Momentum was fixed to 0.7.
The network was trained for 3500 epochs. The
resultant network gave a training accuracy of
97.01% and a testing accuracy of 94.61%.

Table 1. Analysis of the results of the algorithm

S.	No. Property Value

1. Mean Training Accuracy 98.10%

2. Mean Testing Accuracy 98.63%

3. Approx. Training Time 10 hours

4. Mean Correctly Identified Instances (Training) 391

5. Mean Incorrectly Identified Instances (Training) 7

6. Mean Correctly Identified Instances (Testing) 168

7. Mean Incorrectly Identified Instances (Testing) 3

Figure 3. Performance of best networks against generations

Journal of Information Technology Research, 4(1), 34-47, January-March 2011 43

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The other model trained was a fixed ar-
chitecture evolutionary neural network. Here
the neural network architecture was the same
as discussed in the previous approach. The
weights and biases were optimized using genetic
algorithm. The genetic algorithm consisted of
10 individuals, each trained in 15 generations.
The various weights and biases could vary from
-2 to 2. Rank based scaling with stochastic
uniform selection was used. Elite count was
kept as 2. Crossover rate was 0.8. Gaussian
mutation with a spread and scale of 1 each was
used. The genetic algorithm used back propaga-
tion algorithm as the local search strategy. The
BPA had a learning rate of 0.05, and momentum
of 1. Training was carried for 30 epochs. The
algorithm had a training accuracy of 93.92%
and testing accuracy of 95.40%.

The next algorithm we use to test the ac-
curacy with is the variable architecture Evo-
lutionary Neural Network. Here we follow a
connectionist approach. The neural network is
assumed to be consisting of one hidden layer.
In place of an all-connected architecture, we
assume that only some connections are allowed
from the input layer to hidden layer and hidden
layer to output layer. The information regard-
ing the connections is stored into the genetic
individual. The various parameters used in this
approach are the same as the ones used in the
fixed architecture neural network. Extra con-
nections were penalized by assigning a penalty
of 0.01 per connection. The hidden layer could
have a maximum of 30 neurons. The accuracy
in this case was 97.01% for the training data
and 95.21% for testing data.

The next approach tried to test the accuracy
of the algorithm was ensemble. Here we made
3 experts, each being a neural network with
similar architecture as discussed in the previous
approaches. These three neural networks gave
their probability vectors corresponding to the
various classes as outputs. A probabilistic sum
of these vectors was taken, to get the final output
vector. The winning class was determined from
this vector. On training and testing, the system
gave an accuracy of 97.98% on the training data
and 95.95% on the testing data.

The other method applied for testing the
accuracy of the algorithm was modular neural
network, where the complete feature space was
partitioned into three modules. Each of these
modules was given a separate neural network for
training. The architecture of the neural network
was the same as discussed earlier. After train-
ing and testing, the system gave an accuracy
of 96.49% on the training data set and 95.08%
on the testing data set.

The next method of application was a ran-
dom attribute division using Back Propagation
Algorithm. Here we try to control the curse
of dimensionality by using multiple neural
networks in a modular manner. Three modules
were made. Every attribute was given randomly
to two of the three modules. The three modules
were trained and tested against the respective
data sets. On simulation, the training accuracy
was found to be 97.19% and testing accuracy
was found to be 96.03%.

The various algorithm results have been
summarized in Table 2.

From Table 2, it is clear that the proposed
algorithm gave the best generalization and
testing accuracy as compared to all the methods
presented. Hence using this approach we have
been successful in removing the adverse effects
of curse of dimensionality in an effective man-
ner using an evolutionary approach. The high
recognition score illustrates an effective diag-
nostic system.

ConCluSIon

Curse of dimensionality is a major problem
that the neural networks face. Modularity is a
welcome step to remove the curse of dimension-
ality problem with the least loss of information.
One of the primary ways of implementation
of modularity is by attribute division. In this
paper we used genetic algorithms for devising
an effective division of attributes amongst the
various modules of the modular neural net-
work. The system so formed tried to make as
effective modules as possible, with limited size
and limited number of attributes. The overall

44 Journal of Information Technology Research, 4(1), 34-47, January-March 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

modular neural network used these modules
for the decision making. Each module was a
multi-layer perceptron which was trained us-
ing back propagation algorithm. The modules
returned the probabilities of the occurrence of
the various classes, which was combined using
an integrator using sum rule. This made the
final decision. The genetic algorithm not only
worked for formulating the effective attribute
division strategy, but also evolved the optimal
neural network architecture.

This algorithm was applied to the problem
of diagnosis of Breast Cancer. The attributes
needed to be divided into a set of three modules.
On training and testing, the resultant system
recorded an accuracy of 98.10% on the training
data and 98.63% on the testing data. The per-
formance of the algorithm was compared with
a number of algorithms known in literature. We
observed that the proposed algorithm gave the
best performance in terms of both the training
and testing data. This shows the high diagnostic
capability of the network. Hence we have been
able to remove the problem of dimensionality
from the conventional neural network to a good
extent by working over effective modularity.

The present algorithm is used over a single
database from biomedical engineering. The
algorithm may be further extended to more
databases from diverse applications. This would
enable use of the algorithm in different fields.
Time complexity is another major problem as-
sociated with the algorithm. Effective models
may be built to control execution time. This

would enable an even better optimization. The
approach is primarily used using the genetic
algorithm with multi-layer perceptron model.
More combinations of neural and genetic models
may be tried for better perforce. All this may
be done in future.

rEfErEnCES

Breastcencer.org. (2010). Understanding the Breast
Cancer. Retrieved February 1, 2010, from http://
www.breastcancer.org

Bronzino, J. D. (2006). Biomedical Engineering
Fundamentals. Boca Raton, FL: CRC Press.

Cho, S. B., & Shimohara, K. (1998). Evolutionary
Learning of Modular Neural Networks with Genetic
Programming. Applied Intelligence, 9, 191–200.
doi:10.1023/A:1008388118869

Cole, G. (2009). Backprop1. Retrieved February 1,
2010, from http://sourceforge.net/projects/backprop1

Dietterich, T. (2000). Ensemble methods in machine
learning. In J. Kittler & F. Roli (Eds.), Multiple
Classier Systems, Cagliari, Italy (LNCS 5519, pp.
1-15).

Fieldsend, J. E., & Singh, S. (2005). Pareto Evo-
lutionary Neural Networks. IEEE Transactions on
Neural Networks, 16(2), 338–354. doi:10.1109/
TNN.2004.841794

Freund, Y. (1995). Boosting a weak learning algo-
rithm by majority. Information and Computation,
121, 256–285. doi:10.1006/inco.1995.1136

Table 2. Comparisons between various algorithms

S.	No. Algorithm Training	Accuracy Testing	Accuracy

1. Proposed	Algorithm 98.10% 98.63%

2. MLP with BPA 97.01% 94.61%

3. Fixed Architecture Evolutionary ANN 93.92% 95.40%

4. Variable Architecture Evolutionary ANN 97.01% 95.21%

5. Ensemble 97.98% 95.95%

6. Feature Space Modular ANN 96.49% 95.08%

7. Attribute Modular ANN 97.19% 96.03%

Journal of Information Technology Research, 4(1), 34-47, January-March 2011 45

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Freund, Y., & Schapire, R. E. (1996). Experiments
with a New Boosting Algorithm. In Proceedings of
the Thirteenth International Conference on Machine
Learning, Bari, Italy (pp. 148-156). San Francisco:
Morgan Kaufmann.

Fu, H. C., Lee, Y. P., Chiang, C. C., & Pao, H. T.
(2001). Divide-and-Conquer Learning and Modular
Perceptron Networks. IEEE Transactions on Neural
Networks, 12(2), 250–263. doi:10.1109/72.914522

Gruau, F. (1995). Automatic definition of modular
neural networks. Adaptive Behavior, 3(2), 151–183.
doi:10.1177/105971239400300202

Hansen, L. K., & Salamon, P. (2000). Neural network
ensembles. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 12(10), 993–1001.
doi:10.1109/34.58871

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., &
Hinton, G. E. (1991). Adaptive mixtures of local
experts. Neural Computation, 3, 79–87. doi:10.1162/
neco.1991.3.1.79

Janghel, R. R., Shukla, A., & Tiwari, R. (2010).
Decision Support system for fetal delivery using Soft
Computing Techniques. In Proceedings of the Fourth
International Conference on Computer Sciences and
Convergence Information Technology, Seoul, Korea
(pp. 1514-1519). Washington, DC: IEEE.

Janghel, R. R., Shukla, A., Tiwari, R., & Tiwari,
P. (2009). Clinical Decision support system for
fetal Delivery using Artificial Neural Network. In
Proceedings of the 2009 International Conference
on New Trends in Information and Service Science,
Gyeongju, Korea (pp. 1070-1075). Washington,
DC: IEEE.

Jenkins, R., & Yuhas, B. (1993). A simplified
neural network solution through problem decom-
position: The case of the truck backer-upper. IEEE
Transactions on Neural Networks, 4(4), 718–722.
doi:10.1109/72.238326

Jung, J. Y., & Reggia, J. A. (2006). Evolutionary
Design of Neural Network Architectures Using a
Descriptive Encoding Language. IEEE Transac-
tions on Evolutionary Computation, 10(6), 676–688.
doi:10.1109/TEVC.2006.872346

Kala, R., Shukla, A., & Tiwari, R. (2009). Fuzzy
Neuro Systems for Machine Learning for Large
Data Sets. In Proceedings of the IEEE International
Advance Computing Conference, IACC ‘09, Patiala,
India (pp. 541-545). Washington, DC: IEEE.

Kala, R., Shukla, A., & Tiwari, R. (2010a). Clustering
Based Hierarchical Genetic Algorithm for Complex
Fitness Landscapes. International Journal of Intel-
ligent Systems Technologies and Applications, 9(2),
185–205. doi:10.1504/IJISTA.2010.034320

Kala, R., Shukla, A., & Tiwari, R. (2010b). Handling
Large Medical Data Sets for Disease Detection. In
Shukla, A., & Tiwari, R. (Eds.), Biomedical Engi-
neering and Information Systems: Technologies,
Tools and Applications. Hershey, PA: IGI Global.

Kala, R., Vazirani, H., Shukla, A., & Tiwari, R.
(2010). Fusion of Speech and Face by Enhanced
Modular Neural Network. In Proceedings of the
Springer International Conference on Information
Systems, Technology and Management, ICISTM
2010, Bankok, Thailand (pp. 363-372). Washington,
DC: IEEE.

Konar, A. (1999). Artificial Intelligence and Soft
Computing: Behavioral and Cognitive Modeling
of the Human Brain. Boca Raton, FL: CRC Press.
doi:10.1201/9781420049138

Melin, P., & Castilo, O. (2005). Hybrid Intelligent
Systems for Pattern Recognition Using Soft Comput-
ing. Berlin: Springer.

Mitchell, M. (1999). An Introduction to Genetic
Algorithms. Cambridge, MA: MIT Press.

Moriarty, D. E. (1997). Symbiotic Evolution of
NeuralNetworks in SequentialDecision Tasks.
Unpublished doctoral dissertation, Department of
Computer Science, University of Texas, Austin, TX.

Moriarty, D. E., & Miikkulainen, R. (1997). Forming
neural networks through efficient and adaptive co-
evolution. Evolutionary Computation, 5(4), 373–399.
doi:10.1162/evco.1997.5.4.373

Nolfi, S., Elman, J. L., & Parisi, D. (1990). Learn-
ing and Evolution in Neural Networks (CRL Tech.
Rep. 9019). La Jolla, CA: University of California
at San Diego.

Pedrajas, N. G. (2003). COVNET: A Cooperative
Coevolutionary Model for Evolving Artificial Neural
Networks. IEEE Transactions on Neural Networks,
14(3), 575–596. doi:10.1109/TNN.2003.810618

Pedrajas, N. G. (2009). Supervised projection ap-
proach for boosting classifiers. Pattern Recognition,
42, 1742–1760. doi:10.1016/j.patcog.2008.12.023

Pedrajas, N. G., & Fyne, C. (2008). Construction
of classifier ensembles by means of artificial im-
mune systems. Journal of Heuristics, 14, 285–310.
doi:10.1007/s10732-007-9036-0

46 Journal of Information Technology Research, 4(1), 34-47, January-March 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Potter, M. A. (1997). The design and analysis of a
computational model of cooperative coevolution.
Unpublished doctoral dissertation, George Mason
University, Fairfax, VA.

Rivera, A. J., Rojas, I., Ortega, J., & del Jesus, M. J.
(2007). Anew hybrid methodology for cooperative-
coevolutionary optimization of radial basis function
networks. Soft Computing, 11, 655–668. doi:10.1007/
s00500-006-0128-9

Rosin, C., & Belew, R. (1996). New Methods for
Competitive Coevolution. Evolutionary Computa-
tion, 5, 1–29. doi:10.1162/evco.1997.5.1.1

Shukla, A., & Tiwari, R. (Eds.). (2010a). Intelligent
Medical technologies and Biomedical Engineering:
Tools and Applications. Hershey, PA: IGI Global
Publishers.

Shukla, A., & Tiwari, R. (Eds.). (2010b). Biomedical
Engineering and Information Systems: Technologies,
Tools and Applications. Hershey, PA: IGI Global
Publishers.

Shukla, A., Tiwari, R., & Kala, R. (2010a). Real Life
Applications of Soft Computing. Boca Raton, FL:
CRC Press. doi:10.1201/EBK1439822876

Shukla, A., Tiwari, R., & Kala, R. (2010b). Towards
Hybrid and Adaptive Computing: A Perspective.
Berlin: Springer.

Shukla, A., Tiwari, R., & Kaur, P. (2009). Intelligent
System for the Diagnosis of Epilepsy. In Proceedings
of the IEEE World Congress on Computer Science
and Information Engineering, Los Angeles, CA (pp.
755-758).Washington, DC: IEEE.

Shukla, A., Tiwari, R., Kaur, P., & Janghel, R. R.
(2009). Diagnosis of Thyroid Disorders using Arti-
ficial Neural Networks. In Proceedings of the IEEE
International Advanced Computing Conference, Pa-
tiala, India (pp. 1016-1020). Washington, DC: IEEE.

Stanley, K. O., & Miikkulainen, R. (2004). Competi-
tive Coevolution through Evolutionary Complexifi-
cation. Journal of Artificial Intelligence Research,
21, 63–100.

Wolberg, W. H., Mangasarian, O. L., & Aha, D.
W. (1992). UCI Machine Learning Repository.
Retrieved from http://www.ics.uci.edu/~mlearn/
MLRepository.html

Yao, X. (1993). A review of evolutionary artificial
neural networks. International Journal of Intelligent
Systems, 8(4), 539–567. doi:10.1002/int.4550080406

Yao, X. (1997). A New Evolutionary System
for Evolving Artificial Neural Networks. IEEE
Transactions on Neural Networks, 8(3), 694–713.
doi:10.1109/72.572107

Yao, X. (1999). Evolving Artificial Neural Net-
works. Proceedings of the IEEE, 87(9), 1423–1447.
doi:10.1109/5.784219

Rahul Kala is an Integrated Post Graduate (BTech and MTech in Information Technology)
student in Indian Institute of Information Technology and Management Gwalior. His areas of
research are hybrid soft computing, robotic planning, biometrics, artificial intelligence, and soft
computing. He has published about 35 papers in various international and national journals/
conferences and is the author of 2 books. He also takes a keen interest toward free/open source
software. He secured All India 8th position in Graduates Aptitude Test in Engineeging-2008
Examinations and is the winner of Lord of the Code Scholarship Contest organized by KReSIT,
IIT Bombay and Red Hat.

Anupam Shukla is serving as a Professor in Indian Institute of Information Technology and
Management Gwalior. He heads the Soft Computing and Expert System Laboratory at the Insti-
tute. He has 20 years of teaching experience. His research interest includes Speech processing,
Artificial Intelligence, Soft Computing, Biometrics and Bioinformatics. He has published over
100 papers in various national and international journals/conferences. He is editor and reviewer
in various journals. He received Young Scientist Award from Madhya Pradesh Government and
Gold Medal from Jadavpur University.

Journal of Information Technology Research, 4(1), 34-47, January-March 2011 47

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Ritu Tiwari is serving as an Assistant Professor in Indian Institute of Information Technology
and Management Gwalior. Her field of research includes Biometrics, Artificial Neural Networks,
Speech Signal Processing, Robotics and Soft Computing. She has published over 50 research
papers in various national and international journals/conferences. She has received Young
Scientist Award from Chhattisgarh Council of Science & Technology and also received Gold
Medal in her post graduation.

The Editor-in-Chief of the Journal of Information Technology Research (JITR) would like to invite you to consider
submitting a manuscript for inclusion in this scholarly journal. The following describes the mission, the coverage and
the guidelines for submission to JITR.

MISSION:
The Journal of Information Technology Research (JITR) seeks to provide evidential
research on groundbreaking and emerging areas of information science and technol-
ogy, with particular focus on breaking trends in medical informatics, social computing
and biotechnology. In endeavoring to fulfill the objectives of providing a scholarly
and quality outlet for innovative topics, trends and research in the field of IT, the
JITR will succeed in expanding the availability of the most prominent, principal and
critical concepts that will form the knowledge society of the future.

COVERAGE/MAJOR	TOPICS:
The Journal of Information Technology Research (JITR) covers novel and
emerging research in the field of information science and technology, with major
emphasis on the most innovative areas related to biocomputing, medical informat-
ics, anthropocentric computing, and underrepresented technologies and trends
influencing the knowledge society.

All	submissions	should	be	emailed	to:
Mehdi	Khosrow-Pour,	Editor-in-Chief

JITR
jitr@igi-global.com

An official publication of the Information Resources Management Association
Journal	of	Information	Technology	Research	

Call for artiCles

ISSN 1938-7857
eISSN 1938-7865

Published quarterly

Please recommend this publication to your librarian. For a convenient
easy-to-use library recommendation form, please visit: http://www.igi-
global.com/JITR and click on the "Library Recommendation Form" link

along the right margin.

Ideas for Special Theme Issues may be submitted to the Editor-in-Chief.

