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Abstract— Chaotic traffic, prevalent in many countries, is 

marked by a large number of vehicles driving with different 

speeds without following any predefined speed lanes. Such 

traffic rules out using any planning algorithm for these vehicles 

which is based upon the maintenance of speed lanes and lane 

changes. The absence of speed lanes may imply more bandwidth 

and easier overtaking in cases where vehicles vary considerably 

in both their size and speed. Inspired by the performance of 

artificial potential fields in the planning of mobile robots, we 

propose here lateral potentials as measures to enable vehicles to 

decide about their lateral positions on the road. Each vehicle is 

subjected to a potential from obstacles and vehicles in front, 

road boundaries, obstacles and vehicles to the side and higher 

speed vehicles to the rear. All these potentials are lateral and 

only govern steering the vehicle. A speed control mechanism is 

also used for longitudinal control of vehicle. The proposed 

system is shown to perform well for obstacle avoidance, vehicle 

following and overtaking behaviors.  

I. INTRODUCTION 

LANNING of autonomous vehicles is an important 

problem which deals with deciding on the trajectory and 

manner in which each vehicle should be travelling. Most 

planning techniques (e.g. [1]-[2]) are designed to enable 

vehicle motion in the presence of speed lanes. A vision 

system is able to capture the vehicle position and orientation, 

which is used by an algorithm to generate control signals to 

enable the vehicle stay within a speed lane. A higher order 

planning process is used for decision making regarding 

changing speed lanes. In this manner the vehicles are able to 

show behaviors such as obstacle avoidance [3], lane 

changing [4], vehicle following and overtaking [5]-[6]. 

Planning may be broadly separated into longitudinal 

planning and lateral planning. Longitudinal planning deals 

with sticking to one’s own speed lane. This involves speed 

control and steering control in case of curved roads. Lateral 

planning deals with deciding on lane changes and generating 

a feasible trajectory for a lane change. The planning 

primarily involves steering control. 

Speed lanes however lead to efficient traffic motion only 

when vehicles are wide enough to occupy most of the speed 

lane in which they are travelling. When vehicles differ 

considerably in widths, it is possible to fit more vehicles on a 

road and this increases the traffic bandwidth. Having 

motorbikes is a clear example of allowing vehicles that can 

slide in between speed lanes [7] which would have otherwise 

occupied a speed lane of their own. When vehicles vary in 

their preferred speed of travel this is another common feature 

which leads to interesting driving behavior of overtaking. 

Having numerous vehicles differ in sizes and preferential 

driving speeds and using a road on which they defy the speed 

lanes constitutes chaotic traffic. 

While much of the work in planning for autonomous 

vehicles has been done in disciplined traffic from both 

simulation and physical implementation points of view, the 

results of such plans in chaotic conditions is questionable.  

Indian traffic conditions in most places and most times show 

a clear case of chaotic traffic. It is therefore important to 

devise planning algorithms that work in such traffic 

conditions and this is the main aim of this paper. Such traffic 

scenarios are studied in problems of traffic prediction [8], 

accident analysis [9]-[10], etc. However these traffic 

conditions are yet to be studied from the perspective of 

planning of autonomous vehicles. That said, chaotic 

scenarios are studied in different domains which include 

human motion [11] and robotic motion amidst humans [12].  

Little work has been done for the planning of vehicles in 

the absence of speed lanes. Kuwata et al. [13] used rapidly 

exploring random trees (RRT) for planning autonomous 

vehicles. The approach however did not account for the 

cooperation between vehicles which, as with mobile 

Planning Autonomous Vehicles in the Absence of Speed Lanes using 

Lateral Potentials 

Rahul Kala and Kevin Warwick 

P 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06232148


  

robotics, can have a large part to play in traffic dynamics. 

Kala and Warwick [14] employed RRT for planning of 

multiple vehicles using a priority based approach. However 

all vehicles were assumed to be autonomous with 

inexpensive and perfect communication. Elastic roadmaps 

[15] find a lot of applications for vehicle navigation and 

obstacle avoidance. The problems with both classes of 

approaches is that the map needs to be fairly well known and 

further cooperation is difficult to model.  

Cooperative overtaking was studied by Frese and Beyerer 

[16], who compared mixed integer programming, tree 

search, elastic bands, random priorities and optimized 

priorities algorithms for their work. Some of the methods of 

the authors were on speed lane formulations, while the 

number of vehicles was generally lower, which questions the 

validity of methods in chaotic traffic. Some methods 

assumed good communication between all vehicles.   

Artificial Potential Fields [17] have been widely used in 

robotics for planning the motion of a mobile robot. In this 

method the target is given a strong attractive potential while 

the obstacles have a strong repulsive potential. The gradient 

of potential is used to decide on the motion of the mobile 

robot. The ease of implementation and less computational 

time are the biggest advantages of this method. The method 

scales well to moving obstacles and other robots which may 

be dealt with as obstacles for decentralized robot planning. 

For planning multiple robots, shared potential fields [18]-

[19] may be used, wherein robots may benefit from the 

sensor readings of the other robots and as a result they can 

mutually affect the movement of each other.  

Though the problem of robot motion planning closely 

resembles the problem of planning of an autonomous vehicle 

in the absence of speed lanes, the potential method cannot be 

directly applied to vehicles. The prime reason is the presence 

of roads within which vehicles need to be driven. In a road 

scenario with moving vehicles and obstacles it would be 

evident to have too many zero potential points. Further 

cooperation is weakly modeled in potential approaches, 

whereas in traffic scenarios it is important for a vehicle to 

cooperate and allow another vehicle to overtake it. The same 

holds true for elastic band approaches as well.  

II. PROBLEM DESCRIPTION 

We assume here that a map of a road segment is available 

in which the road is bounded by a road boundary on both 

sides. There can be a number of vehicles in the map at any 

time. The size, position and speed of nearby vehicles can be 

sensed by the vision system of the vehicle. There exist no 

speed lanes in the road and hence any vehicle can potentially 

drive anywhere in the road.  

Let, at some time, the position of the vehicle being 

planned be R(x’, y’, θ’). Here the X’ axis (or longitudinal 

axis) is taken as the heading direction of the road and Y’(R) 

axis (or lateral axis), at any point R, as the axis joining two 

boundaries normal to the X’ axis. The angle θ’ denoting 

orientation of the vehicle is measured as the angle from the 

X’(R) axis at the point of measurement (R). The notations 

are shown in Fig. 1. Let the vehicle be of size l x w. Let the 

corners of vehicle in cyclic order be C1, C2, C3, and C4. Let 

the vehicle’s preferential speed of driving be vpref which is 

the speed by which the vehicle travels on a straight road in 

the absence of any other vehicle or obstacle. Let v (≤ vpref) 

be the current speed of the vehicle. Let the rotational speed 

of the vehicle be ω (≤ ωmax). Here v and ω are measured in 

the Cartesian coordinate system which is not the system used 

to represent vehicle position R. The maximum acceleration 

that the vehicle can have is accmax.  

The objective of the algorithm is to move the vehicle at 

every instant of time such that the vehicle does not collide 

with any static obstacle and to ensure that no two vehicles 

collide with each other. On top of this, vehicles may not go 

very close either to each other or to a static obstacle, which 

is a potential threat in driving. The traffic is assumed to 

possess large diversities in terms of the constituent vehicles. 

This means that vehicles vary in terms of their sizes (l x w) 

and preferred driving speeds (vpref). There is no lower limit 

to the allowable speed, which means traffic may have 

extremely slow vehicles moving in it. Hence the motion of 

the vehicle produced by the algorithm can only be regarded 

as desirable if any vehicle having a higher preferred speed is 

able to overtake a vehicle having lower preferred speed. 

Overtaking is preferred to take place on the right side (left 

side driving rule – UK/Japan style), but this is not a 

mandatory condition. On wide roads a vehicle already lying 

to the left of a vehicle may proceed to overtake the vehicle 

on the left (with some cooperation from other vehicles) 

rather than having to go to the other side of the road to 

overtake. The vehicles need not arrange themselves laterally 

as per their preferred speeds (typical in speed lane scenarios) 

which leads to overtaking mostly on the right.   

      

 

 

 

 

 

 

 

 

 
Fig. 1: Notations used for vehicle representation 

III. ALGORITHM  

The algorithm presented here is based upon the method of 

Artificial Potential Field which is a widely used and studied 

algorithm for cases of both single and multiple mobile robot 

planning. In this work however we prefer to model the 

algorithm from the perspective of the thought process of a 

human driver as if he/she was driving the automated vehicle. 

A conventional potential field design would demand using 
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distance measures from surroundings, converting them into 

force vectors and moving the vehicle by the resultant force. 

Sonar sensors are found on a variety of robots which give the 

distance from obstacles directly as input and can easily be 

used for computation of the resultant force vector.  

This methodology however does not enable us to model 

driving behaviors and hence a modified scheme is used. The 

implemented methodology enables us to generate travel 

plans which are more realistic, as well as to mix well in 

chaotic traffic comprising of both autonomous and human 

driven vehicles. Using this mechanism we intend to generate 

similar behaviors to those that are observed in countries 

where speed lanes are not followed. The task of planning 

may be easily broken down into lateral planning and 

longitudinal planning. While the former deals with adjusting 

the steering, the latter deals with adjusting the speed.  

The key task of the algorithm is to decide the lateral 

position of the vehicle which is done using lateral potentials. 

The potentials may be positive, which force the vehicle to 

occupy a position with a larger value on the Y’ axis, or 

negative, forcing the vehicle to go for a smaller value on the 

Y’ axis. We use potential amalgamated from few sources to 

decide the resultant lateral position of vehicle.  

A. Forward Potential 

The first source of potential is from a vehicle or obstacle 

directly in front along the X’ axis of the vehicle. Let the 

obstacle be at a distance of dfi units away from the vehicle 

when measured from a point fi on vehicle’s front boundary 

(line C1C2). Let us assume that after a distance fi 

longitudinally, there lies a static obstacle (o = obs), or 

another vehicle (o = B). The potential applied to the vehicle 

is given by (1). 
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Here vb is the speed of the vehicle in front (B, if any). 

Equation 1(a) deals with the condition when the vehicle 

being planned (say A) is possibly following the vehicle 

ahead, vehicle B. There is no possibility that vehicle A may 

need to overtake vehicle B. As there is no other behavior that 

vehicle A shows because of the presence of vehicle B, the 

potential is 0. 

 However as per condition 1(b), overtaking is possible if 

vehicle A accelerates. Hence potential is applied in the 

direction of sgn(B) by vehicle B to vehicle A. sgn(B) may be 

+1 or -1, whose value can be determined by considering 

whether overtaking should take place on the left or the right. 

In our algorithm both sides are possible hence the value is 

kept 1 if B lies at a higher lateral position to A or at the same 

lateral position (overtaking on the right preferred), and -1 

otherwise. Equation 1(c) is the same scenario where the 

potential is caused by a static obstacle in place of another 

vehicle. sgn(o) denotes the strategy to overcome the obstacle 

on the left (sgn(o)= 1) or the right (sgn(o)=-1).  

Obstacle avoidance may be perceived as overtaking a 

static vehicle which accounts for the difference between 1(b) 

and 1(c). Unlike conventional potential approaches, 

prospective time to collision is used as an indicator of 

potential rather than distance to collision. This accounts for 

the commonly observed driving phenomenon wherein 

maneuvers are smaller on sighting a vehicle directly ahead 

which needs to be overtaken and larger if an obstacle is at 

the same distance.  It may be noted that a sonar sensor may 

not be applicable for measuring this distance as it measures 

distance in heading angle of vehicle and not along the X’ 

axis. However, knowing the positions and orientations of 

other vehicles and the position of vehicle R, this distance 

may be computed. The net value of potential due to front 

sources may be given by (2). 

 

pf=sign(max{abs(pfi)}).(max{abs(pfi)})
2
, i lies on C1C2 (2) 

 

This means that the largest potential measured along any 

point on the front boundary is used as the front potential. 

This potential gives the overtaking and obstacle avoidance 

behavior of the vehicle. Conventional potential field 

modeling for a vehicle directly in front of another vehicle or 

obstacle would have pushed the vehicle A backwards instead, 

thereby disallowing any overtaking. On being marginally 

deviated in its lateral position, the lateral potential would 

have been too small to facilitate quick overtaking.  

B. Side Potential 

The next source of potential is an obstacle, another 

vehicle, or road boundary to the side of the vehicle, with 

distances measured along the lateral direction or the Y’ axis. 

Let the vehicle have a distance of dli (or drj) measured from a 

point li (or rj) along Y’ axis (or –Y’ axis) from a point li (or 

rj) lying at the left (or right) boundary of the vehicle that is 

line C1C4 (or line C2C3). The resultant potential may be 

given by (3).  

 

ps = pli + pri = - max{(1/ dli)}
2
 + max{(1/ drj)}

2
 (3) 

i lies on C1C4, j lies on C2C3.   

 

Note that speed is not mentioned in (3) unlike (2). The 

reason for this is that there is no concept of side speed which 

determines when the vehicle may collide with the sensed 

obstacle, road boundary or vehicle. In fact (unless the same 

obstacle or vehicle was sensed in (1), in which case it is 

governed by its dynamics), the vehicle may never collide 

with the obstacle, vehicle, or road boundary end, since it 

does not lie directly in front and the vehicle mostly moves 



  

straight longitudinally. 

C. Diagonal Potential 

The next source of potential is the forward diagonal 

distance measured at points C1 and C2. Consider point C1 (or 

C2) which is used to measure distance dflC1 (or dfrC2) at an 

angle of 45 degrees (or -45 degrees) to X’ axis. This 

potential may be given by (4). 

 

pd = pfl + pfr = - (1/ dflC1)
2
 + (1/ dfrC2)

2
 (4) 

 

The diagonal potential (pd) acts as a forerunner to side 

potential (ps). The lateral potential is recorded as a position 

which the vehicle would occupy in the future, if it does not 

make any lateral alterations. Diagonal potential enables the 

vehicle to make any corrections in advance. 

D. Back Potential 

The last source of potential is from a vehicle which may 

be to the rear. Let the distance be db in the –X’ axis and a 

vehicle B be behind at this distance. The resultant potential is 

given by (5). 
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In case vehicle B has a higher (than A) preferential speed 

(vprefB) it is possible that vehicle B overtakes vehicle A. 

Hence vehicle A must drift towards the opposite side to 

which overtaking is being performed to facilitate the 

overtaking to take place. In our algorithm sgn(A) has a value 

1 if B lies at a higher lateral position to A, or at the same 

lateral position (overtaking on the right preferred), and -1 

otherwise. The resultant potential is given by (6). 

 

pb=sign(max{abs(pbi)}).(max{abs(pbi)})
2
, i lies on C3C4 (6) 

 

E. Lateral Planning  

There are therefore 4 sources of potential which add up to 

the total potential given by (7). However the different 

potentials are at different scales and hence cannot be directly 

added up.  

 

p = senX’.pf + senY’.ps + senX’Y’.pd + coop.pb (7) 

 

Here senX’ is a factor that governs the sensitivity of the 

vehicle from an obstacle or another vehicle directly ahead. 

Higher values lead to early heavy steering to avoid the 

obstacle or another vehicle, even though it might be way 

ahead. Smaller values lead to small steering early until the 

vehicle reaches very close to the vehicle or obstacle when 

left lateral corrections take place. The factor senY’ governs 

the lateral sensitivity of the vehicle. If the factor is high the 

vehicle is prone to make too large steering changes for small 

behavioral changes. If the factor is small, the vehicle shows 

very slow lateral corrections and the majority of its journey 

is travelled in a straight line, until it reaches a state of 

potential collision in which case sharp steering is required. 

 The factor senX’Y’ governs sensitivity to forthcoming 

lateral corrections, which plays a role as a combination of the 

other two factors. The factor coop governs the degree to 

which the vehicle cooperates with another vehicle to the rear 

for potential overtaking. Small values are better for the 

vehicle being planned but painful for the overtaking vehicle, 

and vice versa. 

Lateral control of the vehicle is done using the steering 

control which changes the orientation of the vehicle. The 

desired orientation of the vehicle θ’desired is proportional to 

the lateral potential given by (8). 

 

                                   θ’desired = k.p (8) 

 

Here k is a constant governing conversion of potential to 

orientation. In practice it may not be possible to orient the 

vehicle to θ’desired due to rotational speed restrictions (-ωmax ≤ 

ω ≤ ωmax), in which case the maximum change possible is 

applied.    

F. Longitudinal Planning  

Longitudinally the major decision to be taken is on the 

speed of travel. The lateral position of the vehicle or the 

steering is controlled by the lateral planner, and the 

longitudinal planner needs to only ensure that the vehicle 

keeps moving at the fastest speed possible. Hence there are 

no longitudinal potentials used in this technique. The 

distance of the vehicle is measured on the X’ axis.  

Let the distance at any point be dfi. Let (after this distance) 

the vehicle meet an obstacle (o=obs) or another vehicle 

(o=B). The corresponding maximum speed possible as a 

result of an obstacle being found after dfi distance is given by 

(9).  
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Equation 9(a) covers the case when there is no potential 

threat of a collision to the vehicle as no slower vehicle or 

static obstacle lies ahead, and hence it may attempt to travel 

at the fastest speed possible. Equation 9(b) is when there is a 

vehicle ahead in which case we must study the relative 

motion of the two vehicles to compute the desirable speed. 

agg (0 < agg ≤ 1) is the aggression factor. More aggressive 

driving is marked by higher acceleration and decelerations. 

A higher value of this factor means that the vehicle continues 

to drive at fast speeds, even after seeing the obstacle or 

vehicle ahead, and sharply decelerates (if needed) to avoid 



  

the obstacle or vehicle. Lower values imply a slower 

deceleration scenario.    

Sometimes it may be possible that no potential collision is 

visible in the lateral direction, but the vehicle is oriented at 

some angle θ’ such that it is close to an obstacle, vehicle, or 

boundary end. Hence at the same point fi calculations are 

repeated with distances measured along the current heading 

angle of the vehicle or θ’, which gives another preferential 

driving speed indicator vθ’i. The resultant preferred driving 

speed is given by (10). 

 

vdesired= min{vfi, vθ’i}, i lies on C1C2  (10) 

 

This speed may not be obtainable due to acceleration 

limits (-accmax ≤ acceleration ≤ accmax.agg), in which case 

the maximum change allowed is made.   

IV.   RESULTS 

The algorithm was developed and tested using a self-made 

simulation tool in MATLAB. For computational reasons we 

measured the various potentials only at the corners of the 

vehicle, instead of measuring them at every point across the 

vehicle boundary and then taking the maximum. Unless a 

small vehicle or obstacle happens to lie strictly in between 

the vehicle corners, which would be the case with very small 

obstacles or vehicles, this approach holds good. We 

generated a number of scenarios to test the working of the 

algorithm with respect to its parameters.  

A. Experimental Scenarios 

A variety of scenarios were created to assess the behavior 

of the vehicle. We first tested the obstacle avoidance 

capability of the vehicle. A single vehicle was created on the 

road which needed to overcome two obstacles one after the 

other. The path followed by the vehicle is shown in Fig. 2(a). 

The vehicle steered left to place itself so as to comfortably 

pass the first obstacle. Soon the second obstacle was 

detected, and on being close enough, steering took place on 

the opposite side.  

The next scenario was created to test the ability of the 

vehicle to overtake another vehicle. To make the scenario 

difficult, a static obstacle was added just after potential 

overtaking completion. The green vehicle was capable of 

high speeds. It emerged later in the scenario, overtook the 

slower vehicle (red) at a point A, and proceeded to pass thee 

obstacle as shown in Fig. 2(b), while the red vehicle slowly 

moved on towards the obstacle. The red vehicle showed 

cooperation and drifted lefts to allow the overtaking 

procedure as denoted by point B in Fig. 2(b). 

In the third scenario the red vehicle is first made to enter, 

which travels straight. Then green vehicle is then made to 

enter which simply follows the red vehicle, exhibiting 

vehicle following behaviors. Then the blue vehicle entered, 

which was capable of high speeds. It succeeded to overtake 

first the green vehicle (at point A) and then the red vehicle 

(at point B). This scenario is shown in Fig. 2(c).  

 

 

 

 

 
 

Fig. 2: Simulation results of the algorithm  

 

In the last scenario two vehicles (red and green) entered 

the map simultaneously, separated laterally by some 

distance. The vehicles continued to move parallel to each 

other, with the same speed. Lateral potentials from each 

other and road boundaries made them drift towards each 

other, in order to make lateral separations equal. Later the 

blue vehicle entered the scenario and proceeded to firstly 

push the two vehicles and then it succeeded in intercepting 

them. Finally the blue vehicle overtook the two vehicles. The 

scenario is shown in Fig. 2(d).    

B. Algorithmic Parameters 

Equation (6) shows a number of parameters which govern 

the contributions of the various kinds of potential. One of the 

important parameters of the algorithm is senX’ which covers 

the sensitivity along the X’ axis. This parameter was tested 

for the case of a single obstacle, in which the performance 

largely depends upon this parameter. The effect of different 

values on the path length is shown in Fig. 3(a). The paths 

corresponding to various values are shown in Fig. 3(b). It is 

clear that low values lead to late steering, while high values 

cause immediate steering and early positioning to avoid an 

obstacle.  

The other parameter of interest is coop, which governs the 

magnitude by which a vehicle cooperates with other vehicles. 

A simple scenario was created with a slow moving vehicle 

ahead in road. A fast vehicle entering the scenario could 

simply overtake the slower vehicle. The magnitude by which 

the vehicle being overtaken cooperates with the faster 

vehicle is the magnitude by which it drifts on the road. This 

leads to less of a need for the overtaking vehicle to steer. The 

path length of the overtaking vehicle and the vehicle being 

overtaken for different values of the parameter coop are 
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shown in Fig. 4(a). The path corresponding to some of the 

values is shown in Fig. 4(b). It can be seen that high values 

of this parameter are desirable for the overtaking vehicle and 

less desirable for the vehicle being overtaken.  

 

  
 

 
 

Fig. 3: Effect of changing parameter senX’ 

 

 

 
 

 
 

Fig. 4: Effect of changing parameter coop 

 

The other important factor is senY’, which governs the 

sensitivity of the vehicle in the Y’ axis. We take a simple 

scenario with a single vehicle generated on the side of the 

road which would prefer to drift towards the center of the 

road due to unequal lateral potential by the road boundaries. 

The behavior of the vehicle for different values of this 

parameter is shown in Fig. 5. On further increasing the value 

of senY’ the vehicle became highly sensitive and showed 

oscillations within the road.  

 

 
 

Fig. 5: Effect of changing parameter senY’ 

V. CONCLUSIONS 

The absence of speed lanes makes it difficult to plan 

autonomous vehicles and this can lead to chaotic traffic 

movement. The non-adherence to speed lanes in many 

countries provides benefits in terms of additional bandwidth 

for vehicles differing greatly in both their speed and width. 

Having no communication between vehicles further 

complicates the process.  

In this paper we used lateral potentials as a solution to the 

problem. Vehicles, obstacles and road boundaries on all 

sides of the vehicle contribute to the potential and ultimately 

the steering of the vehicle. Each source of lateral potential is 

carefully chosen so as to lead to an overall vehicle behavior 

which is commonly found in chaotic traffic. The simulated 

results showed that a vehicle was able to avoid obstacles, 

navigate amidst other vehicles, and overtake other vehicles.  
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