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Abstract 

Rapidly Exploring Random Trees (RRT) and Probabilistic Roadmaps (PRM) are sampling 

based techniques being extensively used for robot path planning. In this paper the tree 

structure of the RRT is generalized to a graph structure which enables a greater exploration. 

Exploration takes place simultaneously from multiple points in the map, all explorations 

fusing at multiple points producing well-connected graph architecture. Initially, in a typical 

RRT manner, the search algorithm attempts to reach the goal by expansions, and thereafter 

furtherer areas are explored. With some additional computation cost, as compared to RRT 

with a single robot, the results can be significantly improved. The so formed graph is 

similar to roadmap produced by PRM. However as compared to PRM, the proposed 

algorithm has a more judicious search strategy and is adaptable to the number of nodes as a 

parameter. Experimental results are shown with multiple robots planned using prioritization 

scheme. Results show the betterment of the proposed algorithm as compared to RRT and 

PRM techniques. 

 

Keywords: Rapidly exploring random trees, probabilistic roadmaps, robot path planning, multi-robot 

systems. 

 

1. INTRODUCTION 

Planning the path of multiple robots deals with construction of a feasible trajectory of all the robots 

such that all the robots reach their goals without any collision with each other or a static obstacle. 

Dynamic environments necessitate the planning algorithm to be computationally less expensive so as 

to enable the robots to quickly react to the changes in the environment. Planning may be centralized 
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or decentralized [1]. Centralized planning techniques construct a complex configuration space 

consisting of all the robots and attempt to generate an optimal plan. Decentralized approaches plan 

each robot separately in their own configuration space. A coordination technique may be used to avoid 

collisions between the robots. Prioritization [2-3] is a commonly used coordination technique.  

Due to the nature of the problem, sampling based techniques are increasingly being used where 

some samples are taken to represent the entire configuration space. Sampling may hence lead to loss 

of completeness and optimality with the advantage of computational time. The two frequently used 

sampling based techniques are Rapidly-exploring Random Trees (RRT) [4-5] and Probabilistic Road 

Maps (PRM) [6-7].   

In RRT [4-5] the search begins with the source as the root of a search tree. At every iteration the 

algorithm generates a random point in the configuration space, searches for the closest point in the 

tree and extends this point to the random sample by a magnitude of stepsize. The algorithm stops 

when the exploration results in reaching the goal. Algorithm may be made biased to explore towards 

the goal. RRT-Connect algorithm checks if travelling straight in the line of expanded point reaches the 

goal, in which case the algorithm terminates. Bi-directional variant of RRT expands two trees, one 

each from the source and goal, and terminates when the two trees meet. RRTs are computationally 

efficient, but sub-optimal. Sub-optimality here may be global or local. Global optimality indicates the 

strategy to avoid obstacles (whether to go from left of an obstacle, or right of an obstacle, or 

in-between obstacles) while local optimality indicates distances to maintain from obstacles. RRT 

paths may be passed through local optimization which is computationally expensive. In a multi-robot 

scenario, each robot may have its own RRT instance which makes the search process time consuming. 

PRM [6-7] is another widely used technique. In this technique a number of random points are 

sampled out of the configuration space and a local planning algorithm is used to determine which 

states are connected to which other states, producing a graph structure called roadmap. In Lazy PRM 

[8] collision checking is performed using a coarser to finer strategy which is more efficient. The 

construction of the roadmap is a computationally expensive step. Samples are taken from the entire 

configuration space, which may consist of a large number of areas which are visibly unnecessary for 

any robot to go from its source to its goal. This is especially true when a small number of robots 

navigate in sections of dynamic maps. Unlike RRT, PRM is less likely to miss being near the global 

optima.  

The key contributions of the work are (a) A graph variant of RRT is proposed which is a completely 

new domain of thought. (b) The proposed algorithm can have multi-directional multi-strategized 

exploration with multiple initiation points. (c) In terms of path length, the proposed algorithm is better 

in terms of both global and local optimality as compared to RRT and its variants. (d) While the 

proposed algorithm is computationally more expensive as compared to RRT (and variants) with every 

robot’s path computed independently by an independent processor, the total processing required is 

smaller in case of the proposed algorithm. (c) The proposed algorithm is better than PRM and similar 
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roadmap approaches in terms of adaptability to the number of nodes as a parameter, and tradeoff 

between path lengths to the number of nodes.    

 

2. RELATED WORKS 

Raveh et al. [9] noted the problem of optimality of the RRT and proposed running multiple instances 

of the algorithm to produce multiple trees or paths to the goal. The authors then used a dynamic 

programming based algorithm for merging the best sub-paths of the various instances to produce the 

best overall path. In another work Yao and Gupta [10] used roadmap consisting of sensors which can 

communicate with each other. Planning was local and distributed along the network graph where each 

robot queried the nearest sensor for deciding the next step. A generalized version of the RRT and PRM 

algorithm is displayed in the work of Chakravorty and Kumar [11]. A connection between any two 

samples or points is done on the basis of Monte Carlo simulations. Carpin and Pagello [12] studied 

the aspects of decentralized motion planning of multiple robots, with respect to computational time 

and optimality. The authors used priority based coordination with space time graph approach for 

planning.  

Jaillet et al. [13] integrated costs with the configurations space and used a transition test to allow or 

disallow the expansion of a node to produce a new node. Urmson and Simmons [14] talk about 

heuristics in the selection of nodes. This allows expansion along better areas of the map, making 

generated path near-optimal. Kalisiak and van de Panne [15] proposed a variant of RRT called 

RRT-Blossom. In this method a flood fill like mechanism was adopted for planning. The expansions 

were biased towards goal, resulting in increasing explorations towards goal from source. Strandberg 

[16] floated the idea of local trees which could be initiated from various parts of the map. These trees 

captured local information about the map by continuous expansions, starting from where they were 

initiated. Ferguson and Stenz [17] proposed another variant called Anytime RRTs using similar 

heuristics for selection and expansion of nodes.  

Sampling based approaches face narrow corridor problem wherein the algorithm is unable to 

compute path of the robot from source to goal when the path passes through a narrow corridor. A 

solution called retraction based RRT was presented by Zhang and Manocha [18] in which a sample 

generated within obstacle was promoted to its nearest neighbor in free space. Clark [19] used single 

query based PRM algorithm for planning. The solution consisted of software, communication, 

planning, and control modules. Connections could be build or get broken as the environment changed.  

Kala [20] solved the problem of planning of multiple robots using co-evolutionary genetic 

programming. The solution consisted of multiple instances of slave genetic programming for each 

robot, while master genetic algorithm computed the optimal combination of plan. Robots had 

common memory for sharing optimal sub-plans. Kala et al. [21] used an iterative solution to the 

problem of path planning of robot using A* algorithm. The algorithm proceeded from coarser to finer 
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level which was executed by a tree-based map representation. At every iteration cells along computed 

paths were broken down into sub-cells representing a finer map. Gayle et al. [22, 23] introduced the 

concept of reactive deforming map where the map could adapt to changing situations. The movement 

of robot was done based on the internal forces that represent forces of the roadmap; and the external 

forces or the forces of the dynamic obstacles which become dominant if they come into the vicinity of 

the robot suddenly.  

 

3. ALGORITHM 

The problem is to find a collision-free trajectory τi(t) for a number of robots, each starting from a 

given source (τi(0) = Si) to a given goal (τi(Ti) = Gi), where the journey completes in time Ti. This is a 

multi-robot single query problem. The robots must not collide with any static obstacle at any time i.e. 

τi(t)ζ
free

i  i, 0 ≤ t ≤ Ti. Here ζ
free

i denotes the free configuration space of the robot i. The robots 

must also not collide with each other in their way i.e. τi(t) ζ
free

i – Cj(τj(t))  i, j ≠ i, 0 ≤ t ≤ Ti. It is 

assumed the robots disappear as soon as they reach their goal. The function Cj(τj(t)) returns set of 

points in the configuration space ζ which are occupied by robot j when placed at position τj(t). The 

travelling speed of the robot vi is constant.  

The objective is to minimize the cumulative travel time ∑iTi. Additionally the robots may prefer to 

maintain some minimal separation smin from obstacles and other robots, which means preferably 

τi(t) sminζ
free

i – Cj(τj(t))  i, j ≠ i, 0 ≤ t ≤ Ti. The robots may have non-holonomic constraints as 

per their own modeling, which needs to be accounted for.    

The overall solution is summarized by figure 1. The algorithm first iteratively produces a graph by 

constantly adding nodes and edges. This graph is then used for the planning of the mobile robots. The 

various aspects of the algorithm are summarized in the subsequent sections.  

3.1. Rapidly Exploring Random Graphs 

The proposed algorithm maintains a graph structure called Rapidly-exploring Random Graphs (RRG). 

Each node of the graph may be connected to one or more nodes. The chief properties of the graph are: 

(i) The complete graph may be interconnected, or may consist of disconnected sub-graphs.  

(ii) Minimum distance between any two nodes is r which avoids too many nodes being produced 

close to each other resulting in high computational costs with minimal increase in quality. r is 

roughly of the order of stepsize. Here stepsize is the distance by which a node is expanded to 

produce a new node.  

(iii) Each node has a location and a color. Location tells the position in the configuration space, 

while the color speaks about the origin of the node that is the initial node by continuous 

expansion of whose children the node is produced. Every child node takes the color of the 

parent, whose expansion produces the child.  
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(iv) Each node is connected to every node at a distance of less than 2stepsize, if the connection 

between then is collision free.  

(v) Every node may be connected to multiple nodes of the same color signifying redundant 

connectivity (unlike RRT) between nodes. Hence expansion of a child from parent may also 

result in the child being connected to the parent’s parent. Besides, a node may be connected 

to some nodes of different color with corresponding edges known as bridges between the 

colored sub-graphs.  

(vi) It is possible to construct a cover around all nodes, which marks the area out of the entire 

configuration space which has been explored. No new node may easily be produced inside 

this cover. Hence when the cover includes entire free configuration space, the algorithm must 

stop. For most practical applications though it may be made to stop a lot early.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 : Algorithm Framework. 

 

Initially a set of initiator nodes are added to the graph, which are the only vertices in the graph. All 

initiator nodes are disconnected from each other. All points are given a distinct color. Search operation 

in random direction starting from the initiator point may be a costly exploration. Hence optionally a 

global attractor may be specified for every initiator point. The exploration, starting from specified 

point, proceeds so as to move towards its global attractor. The default choice is to take the set of 
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sources and goals of all robots as the set of initiator points. Redundant points or points less than a 

distance of r are taken as one. The corresponding goals for sources and vice versa can be taken as the 

global attractors. Additionally if from any apriori analysis of the configuration space some interesting 

insights are already drawn, these may be added as initiator nodes. Say it is known that passing through 

a corridor is likely to be good for some robot; a point inside corridor may be specified as the initiator 

node. The search strategy is hence multi-directional in nature. The various terms are summarized in 

figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2 : A sample RRG. 

 

3.2. Expansion Strategy 

The graph (RRG) is iteratively produced by constantly adding nodes, and finding the nodes with 

which the newly produced node must be connected to via edges. We iterate through all the colors in 

the graph. A color here denotes a sub-graph which may or may not be connected to other sub-graphs 

depending upon the presence of bridge edges. For every color c a sample is generated (Sζ), closest 

node is found in the colored sub-graph (V: minV(|| V – S ||, color(V)=c, VRRG). The node V is 

expanded towards S by a magnitude of stepsize to produce a new node (N) which takes the same color 

as V (color(N) = c). The node N is added to the RRG only if no other node already lies in RRG close 

enough to N and N is collision free. After the addition of node, new edges need to be added. Edges are 

all undirected. N is connected to any node p by an edge e if || N – p || < 2stepsize. Collision checking is 

additionally performed. The edge e is called as a bridge edge if color(N) ≠ color(p).  

The important issue here is selection of sample S which forms the expansion strategy. Four ways 

are formulated which are.  
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(i) General exploration: The sample is randomly chosen out of the entire configuration space ζ.  

(ii) Exploitative: The global attractor corresponding to the color is chosen as the sample.  

(iii) Bridging: A random sample S is drawn out of RRG such that color(S) ≠ c. This is applied in 

pursuit of bridge edges and merging of sub-graphs  

(iv) Density balancing: Attempt is to expand the graph towards areas which have not been 

appreciably covered yet. For this a coarser level hashmap is created with every block (B ζ) 

of points on the configuration space ζ corresponding to a cell of hashmap. The number of free 

states in B (free(B)=count(b), b  B∩ ζ
free

) are stored in the hashmap along with the number 

of nodes in RRG that lie within the block B (noNodes(B)=count(r), rRRG ∩ B). A cell of 

the hashmap is selected by tournament selection between two randomly chosen cells with 

weight of selection of cell B (w(B)) given by equation (1). 

 w(B) = free(B) - noNodes(B).stepsize
2
 (1) 

The sample S is taken to be the mean of the block corresponding to winning cell W, that is S=W .  

The four methods of expansion happen with probabilities pexplore(t), pexploit(t), pbridge(t), and pdensity(t), 

such that  

 pexplore(t) + pexploit(t) + pbridge(t) + pdensity(t) = 1 (2) 

These parameters are made to change with time (t). In the initial little iterations the intention may 

be more exploitative on reaching towards the corresponding global attractor with some exploration. 

This ensures that a solution is obtained quickly much like traditional RRT. Later attempt is to explore 

new areas and attempt to connect even to sub-graphs which lie far away, if no direct or indirect 

connection exists. This adds a deterministic adaptation to the system. In the present form the change 

of probabilities with time is as given by equation (3). 

 px(t) = px(0) –t/T.(px(T)- px(0)) (3) 

where px(0) is the initial value, px(T) is the final value, T is maximum time for which change in 

probability holds, t is time subjected to a maximum of T after which no change is made to these 

probabilities. At any time equation (2) must hold.  

3.3. Exploration and Exploitation  

Apart from general exploration and exploitation, an important concept designed is bridging in which 

the different colored sub-graphs try to connect to the neighboring sub-graphs. Imagine a general 

scenario with multiple robots. If the global attractor of an initiator point is near the location of another 

initiator point, the two colored sub-graphs are bound to meet and bridge. This is equivalent to the 

bidirectional search using RRT. Similar is the case when a global attractor corresponding to some 

robot lies close to the only path possible for some other robot. However for the other cases, it is likely 

that the sub-graphs no not bridge. The motivation is to add a little computation to RRT (for the case of 

a single robot) to significantly improve the path cost, which is modeled by bridging behavior. It 

requires little additional computation, but once merged opens a pool of options consisting of the 
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sub-graph to which bridging has taken place along with all sub-graphs to which the bridged sub-graph 

was already bridged to. If individual sub-graphs are visualized as explorations of each robot being 

planned, bridging acts as a form of experience sharing between them.  

When left to be executed indefinitely, RRG has the potential to eventually cover the entire 

configuration space available. However in the later iterations, random samples may be generated near 

the already explored areas, or at the goal which may have already been found or explored. If a large 

number of nodes are already present in the area, a new node may not find a place with the algorithm 

returning a failure to add node. Hence there are more failures than exploration to a rare state in the 

configuration space, which wastes computational time. An effort is hence made to avoid additional 

computation in expansion along explored areas, but to rather use it to go to new unexplored areas. 

Hence exploration should guide a graph for expanding towards most unvisited places in the 

configuration space, which are also nearest to a particular color as compared to any other color. The 

density balancing method carries a practical implementation of same concept.  

As a result of these steps nodes are widespread. Unlike PRM, the algorithm is initially exploitative, 

and then explorative.  

3.4. Post Processing and Multi-Robot Planning 

The stopping criterion of the algorithm may be based on execution time, number of iterations, 

maximum number of nodes, or maximum number of failures in adding a node. As the algorithm 

proceeds certain colors may reach their threshold of expansion, wherein their covers either merge with 

the covers of other colors or limits of the configurations space. Failures to add nodes for every color 

are monitored, and if a set threshold is crossed termination for expansion of a particular color is set. 

Graph search is used to compute the trajectory of a robot. As per the scenario the best graph search 

algorithm is A* algorithm with Euclidean distance from goal heuristic function. Paths are 

post-processed using splines with small local optimization. This gives the final trajectory τi(t). For 

multi-robot systems planning is done in a priority based manner. The algorithm is given by 

 

CreateRRG(initiatorPoints) 

nodes ← initiatorPoints<Points, Colors, Global Attractors> 

edges ← null 

failuresc ← 0 for all colors c 

terminatec ← false for all colors c 

while stopping criterion 

 for every color c 

if terminatec = false 

success ← Expand(c) 

   if ┐success failuresc  ← failuresc + 1 
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   if failuresc > threshold terminatec = true 

  end if 

 end for 

end while   

 

Expand(Color c) 

Generate sample S 

V ← minV|| V – S ||, colour(V) = c, VRRG  

N ← V + stepsize.(S – V)/|| S – V|| 

if Nζ
free

i 

color(N) ← c 

Nodes ← NodesN 

edges ←  edges (p, N)  (N, p) pRRG, p≠N, || p – N || < 2stepsize, p → N is 

collision free 

return true 

end 

return false 

 

GetTrajectory() 

τ ← null 

for every robot i in decreasing order of priority 

 Path  ←  GraphSearch(RRG, Sourcei, Goali, τ) 

 τi ← localSearch(Path, τ) 

 τ ← τ  τi 

end for 

 

4. Experimental Results 

The approach was tested by means of simulations. A number of scenarios were generated from easy to 

more challenging ones. The simulations were performed on a system with Intel i3 processor (2.2 

GHz) with 3 GB RAM. Two scenarios are discussed here. The first scenario consisted of a simple 

single obstacle in the middle of the paths of robots from source to goal. Four robots were generated at 

the corners which were supposed to travel to the other corner. The graph started the generation 

process from the four corners and continued till the four sub-graphs met and later the process 

continued exploring the entire robotic map. The generation of RRG is shown in figure 3(a). A video 

showing the expansion (until it was no longer possible to add any node) may be found at [24]. The 

path traced by the robots is shown in figure 3(b) (please refer [24] for more insights into the results). 
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It is natural prolonged expansions would not be done in real time operations and generation would be 

terminated much before. The initial paths were more biased towards the diagonal and sub-optimal. 

The optimal paths are much deviated from the map diagonal. Hence enabling RRG generation for 

larger time is profitable.  

  

(a) RRG generated after few execution steps (b) Path followed by the participating robots 

Figure 3 : Simulation results for first scenario.  

 

The second scenario consists of more number of obstacles forming a kind of maze through which 

two robots need to navigate across the opposite corners. Again four sub-graphs are generated from the 

four corners. There are two routes possible for every robot, out of which they need to collectively 

select the optimal one. These two routes have small differences in path length. The generated graph is 

shown in figure 4(a). The path traversed by robots is shown in figure 4(b). It may be seen that the 

robots could select the optimal path from source to goal, and travelled by the same.  

  

(a) RRG generated after few execution steps. (b) Path followed by the participating robots. 

Figure 4 : Simulation results for second scenario.  

 

The maximum number of nodes that can be generated in the RRG is limited (proportional to the 

area of the map without obstacles) beyond which it may not be able to add nodes. The average path 

length is plotted against different number of nodes in the RRG. No post processing was done. The 
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results are shown in figure 5(a). Higher number of nodes implies a larger chance of having nodes 

close to the optimal path. The small increase in path length at certain places is due to the presence of 

multiple robots. Addition of some node may lead a robot to navigate by the added node, which might 

in turn be coming on the optimal path of another robot. The other robot now needs to take a longer 

route, thereby having sufficient separation from the earlier robot.  

Number of expansions of the RRG is not the same as the number of nodes in it since many 

expansions result in infeasible nodes which are not added. As the number of nodes in RRG increases, 

it becomes increasingly difficult to expand feasible nodes as the overall map is already covered by the 

RRG. Figure 5(b) shows the number of expansions of RRG for various numbers of nodes, and figure 

5(c) shows the execution time. The execution time includes the time spent in generation phase and the 

graph search phase. Normally 5% of deviation from the optimal path is acceptable if it comes with a 

big computational gain, which can be easily seen from figure 5. By about 2000-3000 (scenario 1) or 

about 4000-6000 expansion attempts (scenario 2), it is possible to solve for all the robots in about 3-4 

seconds (scenario 1) or 5-6 seconds (scenario 2) getting paths within the optimality threshold. 

Obviously expansion of more number of nodes would result in more computation time which may 

also result in better paths, and vice versa. Whether further time can be invested or not depends upon 

the problem and the computational availability.   

  

(a) Path length v/s number of nodes.  (b) Number of expansion attempts v/s number 

of nodes. 

 

(c) Execution time v/s number of nodes. 

Figure 5 : Analysis of number of nodes.  
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It is further important to study the effect of changing the number of robots. We take the first 

scenario and repeat the experiment for different number of robots. The minimum number of nodes 

required for generation of a feasible plan, the minimum execution time for generation of a feasible 

plan, and average path length is shown in figure 6. It may be clearly seen that the increase in 

minimum nodes and execution time is reasonably less as the robots are increased. It should be noted 

that for the stage of construction of the graph, the computational time increases with the number of 

robots till it reaches a worst case of PRM with moderate number of robots, after which it remains 

constant. In such a case graph generated by RRG is similar to the PRM roadmap. Hence RRG 

construction complexity (worst case performance) is invariant to the number of robots. Both PRM and 

RRG can be used with a more reactive and less deliberative roadmap based planning methods (e.g. 

[22]) rather than the present naive approach in case the number of robots is very high. In other words, 

the number of robots is not a limit for the algorithm in general. The path length slightly increases with 

number of robots as optimal plans of individual robots are prone to collisions with each other.  

   

(a) Minimum number of nodes v/s number of 

robots. 

(b) Minimum execution time v/s number of 

robots. 

 

(c) Path length v/s number of robots. 

Figure 6: Analysis of number of robots. 
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5. Comparisons with RRT and PRM 

The same two scenarios as discussed in section 4 are taken for comparisons. In terms of path length 

RRG clearly outperformed RRTs by an extent of 8.2%. RRT travelled diagonally straight until it 

found the obstacle and then took a turn to reach the goal. This shows RRT is more locally sub-optimal 

as compared to RRG. In terms of total number of nodes as well RRG performed better. For RRT every 

robot generated its own tree which meant a lot of duplication across robots. RRT took 233.544% 

larger number of nodes for generation of a feasible plan, as compared to RRG.  

For the second scenario as well, RRG clearly outperformed RRT. It generated 15.46% shorter path. 

RRT could not make out the shorter of the two possibilities for the robots as visible in the map. Hence 

at some run the longer alternative was followed, while at some other the shorter alternative was 

followed. This made the path length large. RRG could at all instances analyze the better path, and 

made the robot move by the same. This shows RRT is more globally sub-optimal as compared to RRG. 

The RRG took 136.199% lesser nodes for generation of a feasible plan. For two robots the RRT had to 

replicate the process of generation of tree twice which accounts for the difference.  

Comparison of PRM with RRG is difficult to do as both RRG and PRM have different 

interpretation of the parameter of number of nodes. Having a larger number of nodes result in 

complete exploration in RRG which produces a graph which closely resembles a PRM roadmap. 

While comparing RRG with PRM using path length as a metric, a marginal betterment of RRG to 

PRM was observed. This may be attributed to the more directed nature of expansion of RRG. The 

major limitation of PRM was in the number of nodes as an algorithmic parameter. While specifying 

large number of nodes led to large execution times, the small number of nodes had no guarantee of 

generation of a feasible plan. It was not possible to determine this parameter by any way during the 

execution, which is not the case with RRG. This parameter can be made adaptive in RRG.  

In experiments maps where the source and goal are located in a sub-map which forms a small part 

of the entire map (e.g. robot to go from one room to a close by room in a big hall), we may intuitively 

state the betterment of RRG over PRM.  

 

6. Conclusions 

The tradeoff between small computation time and high quality results is a major factor in the choice 

of algorithm. In this paper RRG was proposed as a means to add quality to RRT for the case of 

multiple robots. The algorithm is little more computationally expensive for single robot cases as 

compared to RRT. The proposed algorithm maintains a graph which grows with time to find a feasible 

travel plan for given number of robots. Experimental results show that the proposed algorithm can 

enable navigation of multiple robots in simple to complex maps in a time effective manner. The 

solutions generated are better in terms of quality of solutions both from perspectives of local 

optimality and global optimality as compared to RRT. Further from an analytical point of view, the 
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RRG is seen to be better than PRM.  

By using an effective sampling technique, the proposed algorithm may be made suited for narrow 

corridor and similar problems. Similarly a variety of post processing techniques may be used to 

quickly improve the travel plan. It may still be better to eliminate post processing by adding its effect 

to the RRG generation. Heuristics may be experimented for assigning priorities to the robots, or 

different coordination techniques may be used.  
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